
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

PROBABILISTIC SEARCH ON OPTIMIZED GRAPH
TOPOLOGIES

by

Christian Klaus

September 2011

Thesis Co-Advisors: Timothy H. Chung
Craig Rasmussen

Second Readers: Nedialko Dimitrov
Ralucca Gera

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–09–2011 Master’s Thesis 2009-07-01—2011-09-31

Probabilistic Search on Optimized Graph Topologies

Christian Klaus

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N.A.

This thesis investigates how the performance of a mobile searcher is affected by altering the search environment. We model
the search environment as a simple connected, undirected graph. By adding new edges to the graph, we change the search
environment. Our objective is to optimize search performance, that is, to minimize the (expected) time needed to find the
target, in the context of probabilistic search. We first analyze two different methods to generate random connected graphs, then
evaluate a number of methods to augment the graph, typically by considering the algebraic connectivity of the graph and its
associated (Fiedler) eigenvector. Extensive simulation studies and resulting statistical and theoretical models show that adding
a few wisely chosen edges to a sparse graph is sufficient to dramatically increase search performance. Further, we propose a
novel method for incorporating prior information about the target’s likely location by defining a subgraph on which the
presented approach is performed, resulting in even greater improvements in search performance.

search and detection, search environment, graph Laplacian, algebraic connectivity, augmenting a graph

Unclassified Unclassified Unclassified UU 81

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

PROBABILISTIC SEARCH ON OPTIMIZED GRAPH TOPOLOGIES

Christian Klaus
Major, German Army

Diplom-Ingenier in Information Engineering

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

and

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Christian Klaus

Approved by: Timothy H. Chung Craig Rasmussen
Thesis Co-Advisor Thesis Co-Advisor

Nedialko Dimitrov Ralucca Gera
Second Reader Second Reader

Robert F. Dell
Chair, Department of Operations Research

Carlos Borges
Chair, Department of Applied Mathematics

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis investigates how the performance of a mobile searcher is affected by altering the
search environment. We model the search environment as a simple connected, undirected graph.
By adding new edges to the graph, we change the search environment. Our objective is to op-
timize search performance, that is, to minimize the (expected) time needed to find the target,
in the context of probabilistic search. We first analyze two different methods to generate ran-
dom connected graphs, then evaluate a number of methods to augment the graph, typically by
considering the algebraic connectivity of the graph and its associated (Fiedler) eigenvector. Ex-
tensive simulation studies and resulting statistical and theoretical models show that adding a few
wisely chosen edges to a sparse graph is sufficient to dramatically increase search performance.
Further, we propose a novel method for incorporating prior information about the target’s likely
location by defining a subgraph on which the presented approach is performed, resulting in even
greater improvements in search performance.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 INTRODUCTION 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Literature Review . 3
1.4 Scope . 5
1.5 Main Contributions . 5
1.6 Organization of Thesis . 5

2 MATHEMATICAL FORMULATION 7
2.1 Problem Formulation. 7
2.2 Probabilistic Search Review . 7
2.2.1 Definitions and Notations . 8
2.2.2 Some Search Behaviors . 11
2.3 Graph-Theory Review . 12
2.3.1 Definitions and Notations . 12
2.3.2 The Graph Laplacian . 13
2.3.3 On Random Walks. 14
2.4 Optimization Review . 15
2.4.1 Brute Force . 15
2.4.2 Fiedler Vector Method . 15
2.4.3 Semidefinite Program (SDP) . 16

3 SIMULATION RESULTS AND ANALYSIS 21
3.1 Generating Random Simple, Connected Graphs 21
3.1.1 The Spanning-Tree Method . 21
3.1.2 The Acceptance-Rejection Method 22
3.1.3 Comparing the Methods by Maximum Degree 22
3.2 Sequential vs. Simultaneous Adding of Edges 23
3.3 Fiedler Vector vs. SDP . 26
3.4 Relationship between TTD and Algebraic Connectivity 28

vii

3.5 Growing Graphs by the Greedy Algorithm 30
3.6 Incorporating Initial Information . 37
3.6.1 The Subgraph Idea. 37
3.6.2 Coordinates and a More Realistic Edge Length 39
3.7 Other Search Methods . 43
3.7.1 The Curse of a Myopic Searcher with Perfect Sensor 44
3.7.2 Shortest-path Searcher . 45
3.8 Growing Graphs by Hitting Time . 46

4 CONCLUSION AND FUTURE WORK 49
4.1 Conclusion . 49
4.2 Future Work . 50

Appendices 59

A SOFTWARE USED FOR SIMULATION AND ANALYSIS 59

Initial Distribution List 61

viii

List of Figures

Figure 2.1 Initial probability map with belief one 9

Figure 2.2 Initial probability map with belief one half 9

Figure 2.3 Belief of target presence . 11

Figure 3.1 Comparison of the two random graph-generating methods 23

Figure 3.2 Ten-node graph, sequential adding of first edge 25

Figure 3.3 Ten-node graph, sequential adding of second edge 25

Figure 3.4 Ten-node graph, simultaneous adding of two edges 25

Figure 3.5 Ten-node graph, simultaneous adding of three edges 25

Figure 3.6 Fiedler vs. SDP, add one edge to a random graph 26

Figure 3.7 Fiedler vs. SDP, add more than one edge to a random graph 27

Figure 3.8 Different methods to grow a graph 28

Figure 3.9 Connectivity in relation to number of edges 29

Figure 3.10 TTD in relation to graph connectivity 29

Figure 3.11 Change of TTD with adding edges by greedy algorithm 30

Figure 3.12 Conducting searches on fifteen growing sparse graphs with 20 nodes . 32

Figure 3.13 Conducting searches on fifteen growing sparse graphs with 50 nodes . 33

Figure 3.14 Conducting searches on ten growing sparse graphs with 100 nodes . . 33

Figure 3.15 Estimate coefficient a . 35

Figure 3.16 Estimate coefficient b . 35

ix

Figure 3.17 Estimate coefficient c . 36

Figure 3.18 Induced subgraph . 38

Figure 3.19 Subgraph analysis, random graphs 39

Figure 3.20 Graph with assigned coordinates and prior target distribution 40

Figure 3.21 TTD conditioned on target location 42

Figure 3.22 Subgraph analysis, random graphs 43

Figure 3.23 Example for a perfect searchers trap 44

Figure 3.24 Hitting-time method vs. Fiedler method 48

x

List of Tables

Table 3.1 TTD for different start nodes . 44

Table 3.2 Statistics for a trapped perfect myopic sensor 45

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Executive Summary

High quality information gathered in a short time leads to good decision making. Search and
detection systems are designed to provide information. The effectiveness of a search and detec-
tion system is dependent on the search algorithms used, the accuracy of detection sensors, and
the search environment. This thesis is focused on altering the search environment to increase
search performance, that is, to decrease the expected time it takes a single searcher to find an
object, the target, inside the search environment.

We model the search environment as a simple connected, undirected graph. The nodes of the
graph represent the discrete search cells. An edge between two nodes exists if the search cells
are accessible from each other in the search environment. A searcher is restricted to moving
along edges of the graph as he searches the environment.

The target’s location is fixed and randomly chosen according to a probability map showing the
likelihood of the target’s presence at each search cell. Due to the lack of prior intelligence, the
target could be located to any cell equal likely and the probability map is non-informative, i.e,
uniform. Incorporating prior knowledge about the target’s location requires reasonable proba-
bility models to calculate the probability map. A Markov chain is handy to do those calcula-
tions. Assuming the target’s exact location at time zero, the Markov chain calculation provides
probability distributions for any time late, that is, the delay time until the search begins.

Our objective is to find the edges we have to add to the graph in order to maximize the search
performance. It is often computationally intractable to analytically compute the expected time
to find the target; however, we can always estimate the quantity through simulation. While
simulation can be used to evaluate the goodness of the added edge, it does not help to optimize
the edge selecting process. We do not want to add edges randomly in a brute force kind of
manner and evaluate our choice by simulation. We prefer to add edges in an optimal manner.
Therefore we need a measurement for goodness that allows us to put the edges in order.

The algebraic connectivity — the second-smallest eigenvalue of the graph Laplacian — has
been shown to serve as a good measure to judge the goodness of an added edge. We find a
heuristic relationship between algebraic connectivity and time to find the target. The algebraic
connectivity is non-deceasing with adding edges to the graph. Increasing algebraic connectivity
will most likely decrease the time it takes to find the target. Besides brute force, we could neither
find nor develop an exact method that meets our desire of finding the optimal set of edges to

xiii

add. However, we demonstrate that a heuristic, greedy algorithm that utilizes the information of
the Fiedler vector — the eigenvector associated to the second-smallest eigenvalue of the graph
Laplacian — is a very effective and efficient method to maximize the algebraic connectivity. We
compare this method to an algorithm that uses a semidefinite program to maximize the algebraic
connectivity by adding edges. Using the greedy algorithm is supported by the analysis of the
resulting search times.

In addition to increasing the algebraic connectivity of the graph, the maximum hitting time can
be used to grow a graph as well. A uniform probability map does not provide information to
the searcher about the next move. The searcher will start a random walk through the graph. The
hitting time is the time it takes a randomly walking searcher to travel between any two nodes of
the graph. Large hitting times in a graph cause large search times. Motivated by this fact, we
place an edge between the nodes that have the maximum hitting time.

Our simulations have shown that it is sufficient to add a few edges to the graph chosen by the
greedy algorithm. The gain in search performance incurred by adding edges vanishes with graph
density. The decrease in time to find the target follows an exponential trend with augmenting
the graph and approaches the expected time it takes to find the target in a complete graph. We
propose approximation formulas to estimate the parameters for the exponential trend line.

By constraining the growing algorithm to consider only a special subset of the nodes, we can
increase search performance even further. Intuitively, we would like the searcher to search the
cells with a higher probability of the target’s presence with priority. We extract an induced
subgraph containing only cells with a high likelihood of finding the target. To determine the
size of the subgraph, we use the entropy of the probability map as a measure. The subgraph is
subjected to augmentation by the proposed methods before it is merged back into the original
graph.

Simulation studies show that the results hold whether we use a myopic searcher or a searcher
that finds its way to the next desired search cell using a shortest path algorithm. The main part
of the simulation was done utilizing a perfect myopic searcher. Although the absence of false
detection rates may appear to oversimplify the search problem, it shows interactions with the
environment. The searcher could be trapped just because of the nature of the myopic behavior.
Using a shortest path searcher supports the proposed methods to augment the graph in order to
increase search performance.

xiv

As a side product, the reader will find comparing analysis of two algorithms to generate random
connected graphs. Looking for a way to generate random graphs that can be used as a search
environment, we find that a time-consuming acceptance–rejection method can be used to ensure
the graph is connected.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgements

First and foremost, I would like to thank Professor Timothy H. Chung, my thesis advisor, and
Professor Nedialko Dimitrov. You have opened a world of knowledge and interest to me be-
yond the limits of this thesis study through your guidance, patience, and many open-minded
discussions.

In addition, I am thankful to my co-advisor, Professor Craig Rasmussen, and Professor Ralucca
Gera from the Department of Applied Mathematics. I was highly encouraged by your passion
in mathematics to pursue a dual master’s degree.

Lastly, but certainly not least, I would like to thank my wife, Ilka, and our outstanding sons,
Julius and Eric Ethan. Certainly I would not be where I am today if it were not for your love
and support. I am truly grateful and blessed by you each and every day.

In memory of Major Thomas Tholi, German Army,
who died in Afghanistan on May 28th, 2011.

You were an honorable officer, truly a comrade and friend.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
INTRODUCTION

1.1 Background
The three main parts in ground battle, such as in urban and irregular warfare, are fire, movement
ability, and resistance against adversary weapon force. These military skills have determined
the strength of an armed force for ages. As a fourth battle factor, information dominance has
recently been added due to the invention and dramatic improvement of computer systems in the
last half century.

Knowledge about the adversary’s state can be a huge advantage and can influence an opera-
tion’s outcome. Thus, the faster we have access to some information and the more detailed it
is, the better we are able to respond in an appropriate way. Search and detection systems are
built to provide such information. We can find such systems almost everywhere, for example,
from a single soldier with binoculars, to remote sensors on the ocean floor up to sophisticated
robot systems and unmanned aerial vehicles (UAVs). Information-gathering systems are im-
perfect and it takes time to find a target. There are two obvious ways to increase the system’s
performance: (1) make the technology better, and/or (2) develop better search algorithms and
decision rules. There is a third way that is not so obvious and barely studied—changing the
search environment.

This thesis focuses on analyzing the effect of the system’s performance when we can influence
the environment and if we are able to change it to cause an advantage for the searcher or a
disadvantage for the adversary.

A simple, pictorial example is a building containing a hostile combatant. The task is to find him
as soon as possible. We have to decide the order in which to search the floors and rooms and
are constrained by the building’s structure. Now, assume we can break a wall to reach another
room more quickly. The question is to determine, which wall to break down to minimize the
expected time to find the target.

1

1.2 Objectives
We will model the search environment as a simple connected undirected graph, which is a
common method for a variety of search problems. By inserting new edges to the graph we
are going to change the search environment’s model. Our objective is to maximize search
performance, that is to minimize the time needed to find the target. Considering a stationary
target and a given initial graph, we want to determine, which edge to add to minimize the
expected time to find a target inside the search environment. If we know something about the
target’s behavior and we have some idea where the target is more likely to be, we are going to
include this information in the decision process. We want to answer the question: how does a
prior probability distribution of the target’s location affect the decision about the edges to add?
If we allow the target to move, it raises the question of how this influences the decision. In
particular, how do we handle target movement while updating the probability map, that is each
cell’s likelihood of containing the target? Extensive research on Markovian targets exists in the
literature, as described in the next section. Does the solution for minimizing the expected search
time by choice of edges to add still hold for a moving target? In addition to finding the target as
fast as possible, we may want to constrain the target’s movement. Which existing edge in the
graph should we remove to make it as hard as possible for the target to escape detection?

To put our objectives in an operational scenario, assume we have to plan the search route for an
unmanned aerial vehicle (UAV). The task is to find a ground target. We use a discretized search
area and two search points are connected if they are accessible from each other in the original
environment, i.e., a road in the search environment will result in a path of search nodes in the
discretized model. We assume an imperfect sensor; in particular it could miss the target and
thus has to search the area more than once. The first question is: which connections between
search points should we artificially include in the model to minimize the time to find the target.
Now assume we have a probability overlay for our discretized search model that provides infor-
mation about the likelihood of target locations. We want to know if this additional information
influences the choice of edges to add. Can we find a better solution using this additional in-
formation? In particular, can we find the target in shorter time? Intuitively, we will do best
visiting the search points in order of probability from highest to lowest. But it takes time to
travel from one point to another and we could spend too much time traveling. So, we are likely
not interested in connections between points far away from each other. In the next step we allow
the target to move. Do we have to adapt our model to that new situation in order to minimize
the search time? Assume we could locate a ground team in the search area, i.e., a checkpoint.

2

We constrain the target’s mobility by taking out an edge of the model without influencing the
UAV’s agility. Where should we place the checkpoint to most constrain the target’s movement?
If we could disconnect the search model we would create two smaller subproblems.

1.3 Literature Review
Graphs provide simple and pictorial ways to represent relationships between objects. For that
reason, graph theory is widely adaptable to diverse problem solving. Networks, e.g., the Inter-
net, social networks, biological networks, and simple road maps, are probably the most well-
known examples that use graphs for modeling purposes. A small part of graph theory is focused
on random graphs [1]. Although not obvious at first, random graphs are used to get insight into
real-world problems [2, 3]. The first theoretical models of a network incorporating random
graphs was proposed by Paul Erdös and Alfréd Rényi [4, 5]. Among all graphs, random or not,
connected graphs are of special interest. Ensuring connectivity while generating random graphs
is not an easy task and [6] provides a probabilistic investigation.

The Laplacian matrix of a graph and its eigenvalues can be used in various areas of mathematics
with interpretations in several problems in physics, electrical engineering and many others.
Among all eigenvalues of the graph Laplacian, one of the most popular is the second smallest.
This particular eigenvalue has been studied extensively by M. Fiedler [7, 8]. In terms of graph
theory, this eigenvalue is denoted as algebraic connectivity. Because of its importance and in
honor of Fiedler’s work, the associated eigenvector is known as Fiedler vector. Classifications
of bounds to other graph properties as a function of algebraic connectivity are shown in [9] and
recently summarized in [10].

While the strategy of assigning edge weights to graphs in order to maximize the algebraic
connectivity has been widely studied and applied to various problems [11, 12, 13], the problem
of adding some non-existing edges to achieve the same goal remains challenging. In fact, this
problem is proved to be NP-hard [14]. In this research area, Boyd’s publication [15] is of
particular interest. He and his co-workers have identified and given a common framework for
a lot of these edge-weight problems using a semidefinite program (SDP) [16]. For each of the
missing edges, we can either add or not add that edge, which is a boolean decision variable.
Thus, the SPD is constrained to a boolean solution. In [17], Boyd and Ghosh introduce a
relaxation to the boolean constrained semidefinite program, as well as an application of the
Fiedler vector. While the relaxed SDP does provide an optimal non-integer solution, which
represents an upper bound for the augmented graphs algebraic connectivity, it does not directly

3

yield a solution to the original problem. At the end, a simple rounding of the edge weights makes
this a heuristic method. Neither the Fiedler vector method nor the relaxed SDP guarantees an
optimal solution. In case of growing a graph by one edge, Kim [18] defines a method that uses
the Fiedler vector and provides the optimal solution.

The connection between algebraic connectivity and search performance has been studied in
[19], and a framework for decision making in probabilistic search can be found in [20]. To the
best of our knowledge there is no publication that provides insight into the relation between
augmentation of a given connected graph and search performance.

Another property we looked at during this study is the hitting time related to random walks on
connected graphs [21, 22]. Calculating the hitting times for a given graph is computationally
expensive, especially if the graph gets large. Markov chains have been used for that calculation
and sophisticated algorithms have been developed to reduce the computational effort [23, 24].
The hitting time bridges directly from graph theory to search theory.

Search and search theory constitute a broad subject. The literature provides countless sources
and applications with search problems. Many of those references, even if not directly appli-
cable to our problem, help to learn about different techniques of problem solving. A variety
of sequential optimization problems can be expressed as special cases of an elementary search
problem [25]. Search on graphs is often related to dynamic programming [26], with the desire
to find a self-adjusting data structure, reorder nodes to reveal similarities [27] or combinatorial
search to reconstruct hidden graphs [28]. The author of [29] defines a small-world topology
in a graph-theoretic sense and finds that such topologies can make a search problem very diffi-
cult and that the cost of solving such search problems can have a heavy-tailed distribution. In
economics, we find another major field of search problems and applications. Defining the best
out of several possible alternatives with different properties is considered a search problem [30]
with very strong connections to optimization problems.

Search and detection from a military point of view typically looks for a lost object or a target.
The problem variety ranges from searching for objects hidden in boxes [31] to searching for
moving targets [32, 33], to pursuit-evasion problems [34, 35, 36, 37, 38]. Many search algorithm
and techniques make use of Bayes’ law to calculate and update probabilities of finding the target
at a specific location [39, 40]. Those probabilities are used to find an optimal path through the
search environment. Branch-and-bound algorithms used to solve search problems, as well as
two classical search problems, can be found in [41].

4

1.4 Scope
Among the various kinds of search problems, we concentrate this study on a single searcher and
a stationary target within a discretized environment.

Because of the known relationship between algebraic connectivity and search performance, we
first study how to optimize the connectivity of a given graph by adding a specific number of
edges. To measure the connectivity, we use the eigenvalues of the graph Laplacian, in particular
the second-smallest eigenvalue.

Second, we analyze the effect of the graph modification on the search performance, assuming
the searcher follows a computed path determined by a recursively updated likelihood of the
target presence in each of the search cells—the probability map.

1.5 Main Contributions
With this study, we seek to enhance the relationship between graph and search theory. We
can show that it is beneficial to add non-existing edges to the graph in order to increase search
performance. The change in time to find the target caused by augmenting the graph follows
an exponential pattern. This further implies that the gain in search performance decreases with
graph density. We propose a formula that can be used to roughly approximate the decrease in
time to find the target by adding edges to a sparse graph.

In addition, we analyze different methods to generate random simple, connected graphs as well
as various methods to grow a graph. We rigorously evaluate these various methods and compare
them with existing approaches. Further, we provide a model that incorporates probabilistic
target information with the search problem.

1.6 Organization of Thesis
In Chapter 2, we summarize the known results related to the problem we try to solve. We
subdivide the review into subsection probabilistic search, graph theory, and optimization. Fur-
thermore, we define the notions used later on in this chapter.

Chapter 3 starts with the analysis of the different methods to generate a random simple, con-
nected graph, followed by finding the best way to grow a graph for the purpose of decreasing
search time. That decision is supported by simulation results. Finally, we propose a formula to
roughly approximate the gain of adding edges. Analysis is followed immediately by results in

5

Chapter 3 for all the small subproblems in the same chapter.

Furthermore, we briefly describe problems we have seen during this study related to search
behavior, false detection rates, and projection of the results to more realistic problems that
could appear in real life. Those problems are considered in ideas for future work in Chapter 4.

6

CHAPTER 2:
MATHEMATICAL FORMULATION

2.1 Problem Formulation
This thesis’ goal is to alter the search environment in order to maximize search performance.
We use the time to decision (TTD) as measure of performance (MOP). The search is conducted
on graph G with vertex set V , edge set E and with initial probability distribution p(v), that is the
likelihood of the target’s presence at vertex v. We use the symbol TTD(G(V , E), p(v)) or sim-
plified TTD(G, p(v)) to denote the associated search performance. The searcher is considered
as given and we are not able to change any of its properties such as sensor characteristics. The
environment, modeled as a simple connected graph, can be modified by adding k, 0 ≤ k ≤ m,
non-existing edges to the graph G. The set of non-existing edges is denoted by E , with |E| = m.
The solution, i.e., the set of edges to add in order to best increase the search performance, is
clearly a subset of E and is denoted by the symbol E∗. The problem can be stated as

min TTD (G(V , E ∪ E∗), p(v))

s.t. |E∗| = k,

E∗ ⊆ E .

Because of the relationship between algebraic connectivity, λ2 (the second-smallest eigenvalue
of the graph Laplacian, L) and search performance, as shown in [19], we want to solve the
problem

max λ2 (L(G(V , E ∪ E∗)))
s.t. |E∗| = k,

E∗ ⊆ E

in the first step and analyze the effect to the search performance in a second step.

2.2 Probabilistic Search Review
The primary question in search is to determine where the target is located in a region A. We
want to know the target’s exact position or at least narrow it down to a small part of the search

7

region. If the target is considered stationary and is in fact located somewhere in the region, we
have a good chance to answer the question. Depending on the searcher’s properties, it takes
more or less effort, but at the end we will find the target assuming no constraint on search effort
or resources (e.g., time). The effort needed to come up with an answer can be unbounded if our
initial belief in the target’s presence is incorrect and the target is not located inside the search
region. We need to provide a decision rule for the searcher as to when to stop the search without
determining the target’s position. The primary question becomes whether or not the target is
present in the search region A, and if so, the secondary question is about its position.

2.2.1 Definitions and Notations
The uncertainty of the target’s presence or absence in the search region can be considered a
binary hypothesis test and expressed as H , a Bernoulli random variable; i.e., H can take either
zero or one. The probability that the target is present becomes P (H = 1). Consider a dis-
cretized search region A, with cells c ∈ {1, . . . , |A|}. In addition, we define a virtual cell ∅
that represents all space outside the search environment. A target can be either in one of the
search region cells or in the virtual cell, which represents its absence from the search region.
We define p∅

def
= P (H = 0) = 1−P (H = 1). The presence in one of these cells, also known as

the cell belief , is another Bernoulli random variable, denoted as Xc or X∅. At the beginning of
the search process (time, t = 0) there may be a particular probability that the target is inside the

cth search cell, p0c
def
= P (Xc = 1) or outside the search region, p0∅

def
= P (X∅ = 1) = 1−

|A|∑
c=1

p0c .

In the case of the absence of such prior cell beliefs, the cells are weighted by a noninformative
distribution (i.e., uniform) and p0c = 1

|A| , ∀c ∈ A. Figure 2.1 and Figure 2.2 depict the idea of
the initial target location using initial probability maps and initial belief.

The single searcher’s position, s(t), will be in one of the search region’s cells at any time:
s(t) ∈ {1, . . . , |A|}, ∀t ∈ {1, 2, . . .}. We can define another Bernoulli random variable, Ys(t),
that determines whether the searcher detects the target in the cell at time t. We want to take into
account that the searcher’s sensor is imperfect. We allow the searcher to make false positive
detections, that is, detection of a target that is in fact not present, and false negative detections,
which is a missed detection of a present target, with probabilities

P (Yc = 1|Xc = 0)
def
= α (false positive),

P (Yc = 0|Xc = 1)
def
= β (false negative).

8

0

0.02

0.04

0.06

pr
ob

ab
ili

ty

0

0.02

0.04

0.06

pr
ob

ab
ili

ty

Figure 2.1: Initial probability map with belief
one - Arbitrary initial cell belief for a belief of one,
e.g. we have perfect information that the target is
located somewhere inside the search region. All
probabilities sum up to 1.

Figure 2.2: Initial probability map with belief
one half - The same initial cell beliefs for a belief
of one half, e.g. we have no information whether
the target is located inside the search region. The
probabilities sum up to 1

2
. The remaining probabil-

ity mass is allocated to the virtual cell.

Applying the law of total probability and Bayes’ theorem [42]:

P (B) = P (B|A1)P (A1) + . . .+ P (B|Ak)P (Ak) =
k∑
i=1

P (B|Ai)P (Ai),

P (Aj|B) =
P (Aj ∪B)

B
=

P (B|Aj)P (Aj)
k∑
i=1

P (B|Ai)P (Ai)

j = 1, . . . , k

we can update the probabilities of the target’s presence for all cells c after the tth time steps:

ptc =



P
(
X t
c = 1|Ys(t) = 1

)
=

(1− β) pt−1c

(1− β) pt−1c + α (1− pt−1c)
if s(t) = c, Ys(t) = 1

P
(
X t
c = 1|Ys(t) = 0

)
=

βpt−1c

βpt−1c + (1− α) (1− pt−1c)
if s(t) = c, Ys(t) = 0

P
(
X t
c = 1|Ys(t) = 1

)
=

αpt−1c

(1− β) pt−1s(t) + α
(

1− pt−1s(t)

) if s(t) 6= c, Ys(t) = 1

P
(
X t
c = 1|Ys(t) = 0

)
=

(1− α) pt−1c

βpt−1s(t) + (1− α)
(

1− pt−1s(t)

) if s(t) 6= c, Ys(t) = 0

9

The author in [19] provides an expression that combines these four cases in one single equation
(2.1). He defines

Φ
(
Ys(t)

) def
=
(
1− Ys(t)

)
(1− α) + Ys(t)α,

Ψ
(
Ys(t)

) def
=
(
1− Ys(t)

)
β + Ys(t) (1− β) ,

and finally

ptc =
Θc

(
Ys(t)

)
· pt−1c

Φ
(
Ys(t)

)
+ Ω

(
Ys(t)

)
· pt−1s(t)

. (2.1)

The result is a compact and easy way to update the probability map

with Ω
(
Ys(t)

) def
= Ψ

(
Ys(t)

)
− Φ

(
Ys(t)

)
=
(
2Ys(t) − 1

)
(1− α− β)

and Θc

(
Ys(t)

) def
=

{
Ψ
(
Ys(t)

)
, if s(t) = c

Φ
(
Ys(t)

)
, if s(t) 6= c.

Recall that s(t) is the searcher’s location at time t and c is the cell whose probability is being
updated. A recursive Bayesian update gives the Equation 2.2.

ptc =

t∏
k=1

Θc

(
Ys(k)

)
p0c

t∏
k=1

Φ
(
Ys(k)

)
+

t∑
k=1

(
k−1∏
l=1

Θs(k)

(
Ys(l)

))
Ω
(
Ys(k)

)(t∏
m=k+1

Φ
(
Ys(m)

))
p0s(k)

(2.2)

Similarly, the probability that the target is outside the search region can be expressed and up-
dated by

pt∅ =
Φ
(
Ys(t)

)
· pt−1∅

Φ
(
Ys(t)

)
+ Ω

(
Ys(t)

)
· pt−1s(t)

(2.3)

=

t∏
k=1

Φ
(
Ys(t)

)
p0∅

t∏
k=1

Φ
(
Ys(k)

)
+

t∑
k=1

(
k−1∏
l=1

Θs(k)

(
Ys(l)

))
Ω
(
Ys(k)

)(t∏
m=k+1

Φ
(
Ys(m)

))
p0s(k)

. (2.4)

Equations 2.1–2.4 are needed to determine the best search path in order to minimize the ex-
pected time until detection. Furthermore, we need to update the probability that the target is
present, which is an easy task if we have found the target. In case there is no detectable target
we need to decide whether to stop or proceed with the search. This is related to the problem

10

of (optimal) stopping criterion found in the search literature [43, 44]. The probability mass
accumulated in the virtual cell is the indicator for the target’s presence. Dealing with imperfect
sensors, this value is strictly greater than 0 and strictly less than 1 (0 < pt∅ < 1|α, β 6= 0). For
that purpose, we introduce a lower (Bl) and upper (Bu) probability threshold. The current be-
lief in the target’s presence is defined as B(t) = 1− pt∅ and gets updated after every cell search.
If the cell belief ptc > Bu for any cell c, we believe the target is present and it is located at cell c.
Note that this cell is not necessarily the current searcher’s position. In this case, the belief B(t)

exceeds the upper thresholdBu. IfB(t) < Bl, thus
∑
c

ptc < Bl, the searcher will stop the search

process and the search area is considered target free. The decision made by the preceding rules
may be wrong in both cases. Figure 2.3 depicts the idea of the introduced thresholds and shows
the different belief traces for a perfect and an imperfect searcher.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of search conducted

be
lie

f h
is

to
ry

B
l

B
u

perfect sensor α = β = 0
imperfect sensor α = β = 0.2

Figure 2.3: Belief of target presence - Searches with different searcher were conducted on a graph with n=50
and m=60. The initial probability map was uniform with belief 1

2
. Target was stationary at the same location for both

searches as well as the initial searcher’s position. The thresholds were set to be Bl=0.05 and Bu=0.97.

2.2.2 Some Search Behaviors
Finally, we put the searcher in one of the search region’s cells, the start cell. Besides the initial
belief of target presence, B(0), and the initial probability mass, p0c , ∀c ∈ {1 . . . |A|} (i.e.,
the initial probability map) the searcher needs to be equipped with some rules to conduct the
search, that is, the search behavior. We know from search theory that a random search is the
lower bound to compare against any other search algorithm [45, 46].

For this thesis, we investigate two different search behaviors, both of which restrict the searcher’s

11

motion to only neighboring cells. The myopic searcher will move to the neighbor (possibly the
current position) with highest probability that the target is present. Thus, if the searcher’s current
cell is weighted with the highest probability among all of its possible neighbors, the searcher
will conduct the next search at the same position. Motivated by the fact that the incremen-
tal change in belief is monotonically increasing with increasing search-cell probability mass, a
shortest path behavior can be defined. The maximum-probability cell is defined by the proba-
bility map. Planning the shortest path for transiting from the searcher’s current position to that
maximal probability cell can be done by efficient algorithms, such as Dijkstra’s. On its path,
the searcher is still constrained by the environment and thus will usually visit several other cells
before reaching the highest probability cell. At each of the visited cells, it will conduct a search
but proceed on the planned path regardless of the search result. This form of search behavior is
called “semi-adaptive” search [47]. If the searcher cannot define the next step uniquely by the
given rules and has to choose from more than one equal option, it will randomly choose one of
them. This is true for both search behaviors.

2.3 Graph-Theory Review
Graphs are mathematical structures to model relations between objects and have been exten-
sively studied in the past. Graph theory has been widely adapted to diverse problems since
its first appearance, and for that reason we can find various different notations. We adopt the
notations from [48], and provide an overview in this section.

2.3.1 Definitions and Notations
We are going to model the search environment as a graph. G = (V(G), E(G)) where V(G) =

{v1, . . . , vn} is called the vertex set with n = |V|, and E(G) = {eij} is called the edge set with
m = |E|. An edge, eij , connects vertices vi and vj if they are adjacent or neighbors. We say vi
and vj are adjacent if eij ∈ E(G). The number of neighbors of a node v is called the degree of
v and is denoted by deg(v). We denote the largest degree with ∆(G) and the smallest degree
with δ(G). We consider a simple graph, without multiple edges or loops.

The complement of the graph G = (V , E) is G = (V , E). The set E(G) = {eij|eij /∈ E(G)} is
the set of all possible edges not in the edge set of G, with m =

∣∣E∣∣ and G(V , E ∪ E) = Kn, the
complete graph.

A u-w walk in G is a sequence of vertices in G, beginning with u and ending at w, such that
consecutive vertices in the sequence are adjacent; that is, we can express the walk as u =

12

v1, v2, v2, . . . , vk = w. A u-w walk in a graph in which no vertices are repeated is a path. If
G contains a u-v path, then u and v are said to be connected. A graph G is connected if every
pair of vertices of G are connected, that is, if G contains a u-v path for every pair u, v of distinct
vertices of G.

The distance between u and v is the smallest length of any u-v path in G. The greatest distance
between any two vertices of a connected graph G is called the diameter and is denoted by
diam(G).
For a graph with n vertices, the entries of the n×n adjacency matrix Adj are defined by:

Adjij :=


1, if there is an edge eij

0, if there is no edge eij

0, if i = j

A simple connected graph with n vertices has at least (n − 1) edges and at most 1
2
n(n − 1)

edges, in the latter case the graph is complete. A graph S is called a subgraph of G, written
S ⊆ G, if V(S) ⊆ V(G) and E(S) ⊆ E(G). A subgraph F of the graph G is called an induced
subgraph of G if whenever u and v are vertices of F and euv ∈ E(G) then euv ∈ E(F) as well.
To emphasize this is an induced subgraph of G, we denote this subgraph by 〈S〉G .

2.3.2 The Graph Laplacian

The graph Laplacian, L(G) is a n×n matrix of the form L := Deg − Adj where Deg is the
degree matrix, i.e.,

Degij :=

{
deg(vi), if i = j

0, o.w.

Another way to express the graph Laplacian is using the edge vector ae ∈ Rn, which is defined
for any e = eij by

aek :=


1, if k = i

−1, if k = j

0, o.w.

13

The matrix aeaTe is the graph Laplacian for the graph with the edge e, G = (V , {e}). Thus, the
graph Laplacian for G = (V , E) can be expressed as

L =
m∑
e=1

aea
T
e .

The eigenvalues of the graph Laplacian are of interest for many applications—here in particular
the second-smallest eigenvalue, which is the algebraic connectivity [7]. The eigenvalues, λ, are
defined by:

Lx = λx

(L − λI)x = 0

which has a nontrivial solution if det(L−λI) = 0, where I is the identity matrix. The algebraic
connectivity, λ2, has some interesting properties [7, 9]:

• λ2 is monotonically non-decreasing with adding edges to the graph G,

• λ2 = 0 if and only if G is not connected,

• λ2 = |V| when G is a complete graph and

• λ2 ≤ δ(G).

The corresponding eigenvector to the second-smallest eigenvalue is called the Fiedler vector.
Note that the smallest eigenvalue for a connected graph is always zero.

2.3.3 On Random Walks
The notion of random walks comes into play for the search problem if we have no idea where
the target could be located. The initial probability distribution across the nodes is uniform,
thereby the search starts as a random walk.

Given a graph and a starting point, a searcher selects a neighboring cell at random, moves to
this neighbor and selects a neighbor from this position, etc. The sequence of vertices produced
this way is a random walk on the graph. A random walk can be considered a finite Markov
chain. There is not much difference between the theory of random walks on graphs and finite
Markov chains. Various aspects of the theory of random walks on graphs are surveyed [22]. In
particular, hitting times and return times are of interest for our study.
The access time or hitting time, Hij , is the expected number of steps it takes in a random walk

14

to visit node j, starting at node i. The sum of the hitting times Hij +Hji is called the commute
time, the expected number of steps in a random walk to visit node j and return to node i, starting
at node i. The return time for a node j is the expected time until a searcher revisits that node
without any constraints. So we do not care if any other node is visited before we hit the start
node again. We find the solution by solving the Markov chain for the long-run proportion of
being in a specific state.

2.4 Optimization Review
We want to find the best edge (or a number of best edges) to add to an existing graph in order
to maximize search performance. Our measure of performance is the time it takes to make the
decision whether the target is present or absent. We have to solve an optimization problem.
According to the problem setup, optimization methods are often divided into several subfields,
i.e., linear programming [49], non-linear programming [50], and convex optimization including
semidefinite programming [16]. Among the different and problem-specific algorithms, we are
interested in exact algorithms that provide optimal solutions or algorithms in which we can
define the error magnitude. Unfortunately, this is not always achievable, or we have to pay with
a huge amount of computational effort. For this reason, knowing we will be able to do better,
we sometimes use heuristic algorithms that provide good solutions.

2.4.1 Brute Force
This method simply tries all possible combinations of edges to add and thus is an exact al-
gorithm. It is guaranteed to find the optimal solution. Unfortunately, it takes

(|E|
k

)
eigenvalue

computations, where |E| is the number of possible edges to add and k is the actual number of
edges to add. We used this method for comparison purposes for adding up to two edges. With
an increasing number of nodes, the number of calculations to conduct increases dramatically.
The curse of dimensionality renders brute force improper for practical use.

2.4.2 Fiedler Vector Method
This method uses the Fiedler vector, i.e., the eigenvector associated with the second-smallest
eigenvalue, to find an edge to add. It was first introduced as a greedy perturbation heuristic in
[17]. We add the k edges sequentially, one at a time, choosing the edge eij from the remaining
candidate set with the largest value (vi−vj)2, where v is the Fiedler vector of the current Lapla-
cian. We need to conduct k eigenvector computations to find k edges to add. One eigenvalue

15

and eigenvector calculation takes approximately O(4
3
n3) operations. If v is the unit eigenvec-

tor corresponding to λ2, then vvT is a supergradient of λ2 at L. When λ1<λ2<λ3, then vvT

gives the first order approximation of the increase in λ2. So, the motivation for this method is
to add the edge eij that gives the largest predicted increase in λ2(L), according to a first-order
approximation.

This method does pretty well in many cases, but does not guarantee an optimal solution, either
for adding one edge or for the sequence of edges. In [18], this issue is reviewed and an algo-
rithm is given that guarantees the optimal solution for adding one edge. The proposed algorithm
incorporates λ3, the third-smallest eigenvalue of the graph Laplacian, in addition to the alge-
braic connectivity. A bisection technique is used to stepwise narrow down the list of possible
edges to add. The method increases the computational complexity to O(5.7mn), compared to
O(2mn) for the greedy-type heuristic, excluding the eigenvector calculation. The given algo-
rithm requires graphs that have the two eigenvalues different, λ2 6= λ3, involves much more
computational effort, and conducting this method sequentially does not provide optimality. We
would end up with another heuristic approach. In this thesis, we are not following this path.

2.4.3 Semidefinite Program (SDP)

In his 1973 paper [7], Fiedler has already stated and proven that M̃ = M − λ2 (I− n−1J) is
semidefinite for any n×n semidefinite matrixM with corresponding second-smallest eigenvalue
λ2, where I is the identity matrix and J the matrix of all ones. The graph Laplacian L with
λi ≥ 0, i = 1, 2, . . . , n is always positive semidefinite.

The problem of how to maximize the algebraic connectivity of the graph by adding k, 0 ≤ k ≤
m, edges to the graph can be formulated as

max λ2 (L(G(V , E ∪ E∗)))
s.t. |E∗| = k,

E∗ ⊆ E .

The decision variable for the maximization problem, whether to include an edge or not, is

16

denoted by x ∈ {0, 1}m, where xe = 1 if an edge belongs to the subset E∗[17]:

max λ2

(
L+

m∑
e=1

xeaea
T
e

)
s.t. 1Tx = k,

x ∈ {0, 1}m .

We introduce an shortcut for the resulting graph Laplacian L(x) and relax the problem by
removing the boolean constraint for the decision variable x, obtaining

L (x) = L+
m∑
e=1

xeaea
T
e

with relaxation

max λ2 (L (x))

s.t. 1Tx = k,

0 ≤ x ≤ 1.

Boyd used the semidefinite property to formulate a semidefinite program in [17] to maximize
the algebraic connectivity by adding edges to the graph:

max s (2.5)

s.t. s
(
I− 11T/n

)
� L (x)

1Tx = k,

0 ≤ x ≤ 1.

To see why this is true, let us first decompose L(x) = UΛU−1, where Λ is the matrix with all
eigenvalues of L(x) at the diagonal and 0 otherwise. U is the matrix with all corresponding
eigenvectors. Because L(x) is symmetric, U is orthogonal, and therefore U−1 = UT . Thus,
L(x) = UΛUT . We know that the smallest eigenvalue of the graph Laplacian is always 0 and

17

the corresponding eigenvector is 1. A normalized U looks like this:

U =



a11 a12 · · · a1n−1 1/
√
n

a21 a22 · · · a2n−1 1/
√
n

...
...

...
an−11 an−12 · · · an−1n−1 1/

√
n

an1 an2 · · · ann−1 1/
√
n


,

where the product of rows x and y is

ax1ay1 + . . .+ axn−1ayn−1 +
1√
n

1√
n

=

{
1, if x = y

0, if x 6= y.
(2.6)

Second, let’s find the eigenvalues of
(
I− 11T

/
n
)
.

(
I− 11T

/
n
)
v = λv = Iv − 1

n
1Tv

It is certainly true ∃v � 1Tv = 0. This is an eigenvector associated with λ = 1 and clearly there
are n−1 of these. The remaining eigenvector is 1 with associated eigenvalue λ = 0.

(
I− 11T

/
n
)
1 = λ1 = 1− 1

n
1T1 = 1− 1

n
n = 0

Third, multiply UΓU−1 = UΓUT where U is the orthogonal matrix from the L(x) decom-
position and Γ is the matrix with all the eigenvalues of

(
I− 11T

/
n
)

at the diagonal and 0

otherwise:

a11 a12 · · · a1n−1 0

a21 a22 · · · a2n−1 0
...

...
...

an−11 an−12 · · · an−1n−1 0

an1 an2 · · · ann−1 0





a11 a21 · · · an−11 an1

a12 a22 · · · an−12 an2
...

...
...

a1n−1 a1n−1 · · · an−1n−1 ann−1

1/
√
n 1/

√
n · · · 1/

√
n 1/

√
n



18

=



1− 1/n −1/n · · · −1/n −1/n

−1/n 1− 1/n · · · −1/n −1/n
...

...
...

−1/n −1/n · · · 1− 1/n −1/n

−1/n −1/n · · · −1/n 1− 1/n


=
(
I− 11T

/
n
)
.

Because of Equation (2.6) we know

ax1ay1 + . . .+ axn−1ayn−1 =

{
1− 1/n, if x = y

−1/n, if x 6= y.

Finally putting all the pieces together yields

s
(
I− 11T/n

)
� L (x) ,

L(x)− s
(
I− 11T/n

)
� 0,

UΛUT − sUΓUT � 0,

U(Λ− sΓ)UT � 0.

We constrain the left-hand side of the SDP to be positive semidefinite and subtract s from every
eigenvalue of L(x), so s can be at most equal to λ2(L(x)). If we maximize s at the same time,
we certainly maximize λ2(L(x)). This proves the correctness of (2.5). Good references for the
linear-algebra proportion of the previous derivation are [51, 52, 53].

Because of the SDP relaxation, the result is an upper bound for the optimal integer solution. The
number of edges to add is smeared over all the possible edges to add, i.e., the optimal solution
contains fractions of edges. To solve our original problem, we are not interested in fractions of
edges to add. We either add an edge or not. Once again we need a heuristic to determine, which
edge to choose. The best we can do is simply rounding to find the k best edges, which is not
guaranteed to be optimal.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

CHAPTER 3:
SIMULATION RESULTS AND ANALYSIS

3.1 Generating Random Simple, Connected Graphs
The first step in the analysis is to find a search environment that will be modeled as a graph.
To better understand the role of graph-theoretic properties on search performance, we want to
include all kinds of graphs in our analysis. We do not have any requirements on a graph, other
than that is a connected graph. We are in need for a way to quickly generate random simple
connected graphs even with large node numbers. In this section, we present two ways to do so.
One is computationally much faster than the other, but produces graphs with higher maximum
degrees, ∆, whereas the second approach generates more uniform maximum degrees.

3.1.1 The Spanning-Tree Method
The result we want the random graph generator to return is a connected graph. Every connected
graph has a spanning tree, a subgraph containing (n−1) edges that is connected. Conversely,
a graph having such a spanning tree must be connected. That is the key for the spanning-tree
method.

Suppose we want to generate a connected graph with n nodes and m edges. Initially, all the
numbered nodes are in a “basket” representing available nodes. In a second basket we store
the connected sub-spanning tree, currently empty. The algorithm picks randomly a node from
the set of available nodes and a node from the connected sub-spanning tree. It places an edge
between those two nodes and puts the node chosen from the available node basket into the
basket with the sub spanning tree. Repeating this n times will leave the available node basket
empty, and we find a spanning-tree with n nodes and (n−1) edges in the other basket. We now
have to choose (m−n+1) edges from the remaining n(n−1)

2
− (n− 1) possible edges and place

those in the graph.

We have to conduct only one try to come up with a desired graph and we are able to specify the
number of edges explicitly. The disadvantage is that we produce graphs that tend to have high
maximum degrees (∆). The node first chosen to start to build the sub-spanning tree is likely
to have the most incident edges. We especially observe this for sparse graphs with larger node
numbers.

21

3.1.2 The Acceptance-Rejection Method
This method allows an algorithm to generate random graphs that violate any of our require-
ments. In an additional step, the graph gets checked and accepted or rejected. Rejection would
cause the entire algorithm to start again.

Again, suppose we want to generate a connected graph with n nodes and m edges. The number
of possible edges is n(n−1)

2
. The algorithm draws a binomial random variable with probability

of success (p) for each of those possible edges. It puts an edge into the edge set E(G) if the coin
flip succeeded. If p = 2m

n(n−1) , than the expected number of edges in the resulting graph is m.

We calculate the second-smallest eigenvalue for the preliminary result and accept the graph if
λ2 6= 0. Because it is most unlikely to get the exact number of desired edges in the graph, we
will work with an lower (ml) and upper bound (mu) and accept the graph if ml ≤ m ≤ mu.
That still enables us to constrain the number of edges to a specific number.

This method is unbiased in selecting edges and any node could possibly end up with the highest
degree. The downside is that we have to do many more calculations. Sparse graphs are likely
to violate the connectivity property, and the smaller (mu −ml) is, the longer it takes to find a
graph.

3.1.3 Comparing the Methods by Maximum Degree
Besides the different computational effort required by the two methods already mentioned, the
concern remains that the spanning-tree method produces graphs with higher maximum degree.
This effect appears to be more pronounced for sparse graphs than for dense.

To show this, we generate random graphs with 50 nodes and restrict the number of edges to be
within one of three different ranges. The ranges are [55, 65], [500, 520] and [1000, 1020]. We
generate 50 graphs for each range by each generating method. If it happens that both methods
return a graph with the same number of edges, we increment the count for the method, which
graph has the higher largest degree. The result is shown in Figure 3.1. It is not surprising that the
maximum degrees vary among different graphs with the same number of edges. For the middle-
and high-density graphs, the plot looks like the result we expect from similar methods. In
contrast, the sparse graphs look different. Here the spanning-tree method produced graphs with
a mean maximum degree of 7.24 and a standard deviation of 1.17. The mean maximum degree
for the acceptance-rejection method is 6.54, with a standard deviation of 1.01. This verifies our
concern that the spanning-tree method produces graphs with higher maximum degree.

22

Because of this result, we elect to use the slower (but unbiased in maximum degree) acceptance–
rejection method to generate random graphs.

55...75 500...520 1000...1020
0

1

2

3

4

5

6

7

8

9

number of edges in a graph with n=50

nu
m

be
r

of
 ti

m
es

 o
ne

 m
et

ho
d’

s
gr

ap
h’

s
 ∆

 e
xc

ee
ds

 th
e

ot
he

r

spanning−tree
acceptance−rejection

used method

Figure 3.1: Comparison of the two random graph-generating methods - For each edge number range, 50
random graphs were generated by each method. The counts are the number of times that one method’s graph’s
maximum degree is bigger than the other’s maximum degree, provided the number of edges are the same. The
maximum-degree range was [5, 9] with µ = 6.54, σ = 1.01 for the acceptance-rejection method and [5, 11] with
µ = 7.25, σ = 1.17 for the spanning-tree method

3.2 Sequential vs. Simultaneous Adding of Edges
Up to this point of study, we have a graph to grow—either one that represents a real search
environment or one via the aforementioned random graph-generation method. Except for the
brute-force method, no known method guarantees optimal choices in picking the edge(s) to add
in order to maximize the algebraic connectivity. The one method we have not incorporated so
far is the improved method described in [18], which requires an amount of computational effort
less than the brute force method but guarantees to find the optimal solution in case of adding
one single edge. If a sequential adding of current-state optimal edges leads to an optimal graph,
this method would be our first choice.

We will perform the analysis on a P10, that is, a path with ten nodes and consequently nine
edges. Besides the fact that this is a special graph, it shows some important phenomena too. We
add a missing edge to the graph, calculate the resulting algebraic connectivity, remove the edge,
and pick another one to add. To exhaust all possibilities, we have to do this 36 times. Now, we

23

pick the edge that provides the highest λ2. There is no way we could do better. To visualize
the result we add all 36 edges to the graph and color them according to the calculated algebraic
connectivity. The result is shown in Figure 3.2. In this case, there is no unique optimal solution.
We could add e1,10 or e2,9 and would increase λ2 to the same optimal value.

Let us add e1,10 and perform the same calculation for the remaining 35 missing edges. Figure
3.3 illustrates the outcome. This highlights another phenomenon. No matter which edge we add
in this state, the algebraic connectivity will stay the same. We have to add at least two edges to
get an improvement in λ2. Pictorially speaking, we created an cycle (C10) by adding e1,10 and
thus each node is as good as each other. We can rotate the graph and cannot tell any difference.
This also proves that λ2 is non-decreasing instead of increasing with the addition of edges.

If we do our calculation for more than one edge simultaneously, we have to conduct
(
36
2

)
= 630

calculations to find the optimal solution for adding two edges (Figure 3.4) and
(
36
3

)
= 7140

calculations for adding three edges (Figure 3.5). We observe that the first added edge, e1,10, is
not part of the solution for two simultaneously added edges. On the other hand, the solution
for three simultaneously added edges contains the solution for two simultaneously added edges.
Starting from Figure 3.4 and adding the best edge in order to maximize λ2 will result in Figure
3.5.

This simple example shows two points. First, conducting brute force for more than one edge
to add is not practicable, and second, sequentially adding the current graph’s best edge will
not necessarily return the graph with the highest possible algebraic connectivity. Therefore, a
heuristic method to find the next edge, although this may not be the best one, is good enough
to grow the graph sequentially. For that reason, we prefer the computationally easier Fiedler
vector method to the in [18] proposed algorithm.

24

●

1

2 3

4

5

6

7

89

10

0.10

0.38

λ2
●

1

2 3

4

5

6

7

89

10

0.38

0.38

λ2

Figure 3.2: Ten-node graph, sequential adding of
first edge - Adding one of the colored edges will in-
crease λ2 according to the edge color.

Figure 3.3: Ten-node graph, sequential adding of
second edge - No matter which edge will be added,
λ2 will keep its value.

●

1

2 3

4

5

6

7

89

10

0.59
λ2

●

1

2 3

4

5

6

7

89

10

0.83
λ2

Figure 3.4: Ten-node graph, simultaneous adding
of two edges - This is the optimal solution for adding
two edges with optimal value for λ2. This neither in-
cludes the edge e1,10 nor e2,9 witch are the optimal
solutions for adding one edge.

Figure 3.5: Ten-node graph, simultaneous adding
of three edges - This is the optimal solution for adding
three edges with optimal value for λ2. This includes
the optimal solution for adding two edges.

25

3.3 Fiedler Vector vs. SDP
So far, we have the choice between the sequential Fiedler vector method and the semidefinite
program (SDP) formulation [16] to grow a graph according to its algebraic connectivity. Using
the SDP, we have to conduct one calculation to find k edges to add at once. Remember that
the SDP only works if we relax the problem and allow solutions with fractions of edges. The
optimal value is the upper bound for λ2. At the end, we have to round the optimal solution to get
a heuristic integer solution. The heuristic solution will have an optimal value less than or equal
to the upper bound. Another problem could be the SDP formulation itself. We have to store the
n×n matrix aeaTe for each of the (n(n−1)

2
−m) nonexistent edges in G(V , E), with |V| = n and

|E| = m. This will use a lot of memory, especially for sparse graphs, and the computational
effort hits the limit pretty soon. We can investigate whether the gain is worth the effort.

We can generate a connected random graph with 20 nodes and constrain the number of edges
to be between 20 and 30 in the first step. For each of the missing edges we can calculate λ2
(that is, the algebraic connectivity) after adding that single edge to the graph. The edge with the
highest value is the optimal solution we are looking for. This time, we keep the best ten edges
in mind, just for comparison. Now we look at the SDP integer solution for the same graph and
match it to the ten-best known edges, if possible. We do the same for the Fiedler vector method
and repeat this process for 2000 different random graphs. The plot for graphs with different
edge densities is shown in Figure 3.6.

0

50

100

graphs with n=20 and 20 ≤ m ≤ 30

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0
250
500
750

nu
m

be
r

of
 m

at
ch

es
 o

ut
 o

f 2
00

0
tr

ia
ls

graphs with n=20 and 80 ≤ m ≤ 90

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

500

1000

graphs with n=20 and 140 ≤ m ≤ 150

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Fiedler
SDP

Figure 3.6: Fiedler vs. SDP, add one edge to a random graph - The edges found by the Fiedler vector method
and by a semidefinite program were matched to the ten best known edges (calculated by brute force). The plot
shows the number of times a method hit a specific edge. The simulation was repeated 2000 times for each different
edge density with n = 20.

Notice that the expected number of missing edges is 20·19
2

= 165, if we constrain 20 ≤ m ≤ 30.

26

Thus, the number of matches for the best (second best, third best ...) edge would be 2000
165

= 12.12

if we just randomly pick an edge. So both methods do much better. How well they do depends
on the sparsity of the graph. The smaller the edge set to pick from, the better the result.

Other than the Fiedler-vector method, the SDP can simultaneously find more than one edge to
add. We have not incorporated this advantage, so far. Let us do the same simulation and grow
the graph by 10, 20, and 40 edges. Unfortunately, we do not know the optimal solution and
brute force is just not going to work in reasonable time. For that reason, we switch the measure
of performance to the resulting algebraic connectivity. We count, which method returns the
graph with higher λ2. The results are plotted in Figure 3.7. This analysis shows that the greedy

0

500

graphs with n=20 and 20 ≤ m ≤ 30

0

500

nu
m

be
r

of
 ti

m
es

 a
 m

et
ho

d
re

tu
rn

ed
a

gr
ap

h
w

ith
 la

rg
er

 λ
2

graphs with n=20 and 80 ≤ m ≤ 90

10 edges 20 edges 40 edges added
0

500

graphs with n=20 and 140 ≤ m ≤ 150

Fiedler
SDP

Figure 3.7: Fiedler vs. SDP, add more than one edge to a random graph - A random graph was grown by a
certain number of edges using the Fiedler vector method and a SDP. The plot shows the number of times a method
returned a graph with higher λ2 than the other method. The simulation was repeated 500 times for each different
edge density and each different number of edges to add.

algorithm, that is, the sequential Fiedler vector method, is the best method we have found so
far. The algebraic connectivity of the grown graph is not optimal, but better than a SDP result
after rounding to integer values. For each edge we want to add to the graph, we have to compute
the graph Laplacian. The eigenvalue and eigenvector calculation takes approximately O(4

3
n3)

operations. To lower the amount of computational effort, we picked more than one edge (block)
after one Fiedler vector calculation. For Figure 3.8, we used a block size of 3 and 10 and
compared the result to the normal Fiedler vector method (block size 1) and random addition
of edges. The result for a block size of three is not bad at all and thus this is a reasonable
approach to lower the computational effort. The bigger the block size, the closer the result to
that achieved by randomly adding edges.

27

0 50 100 150
0

4

8

12

16

20

number of added edges

al
ge

br
ai

c
co

nn
ec

tiv
ity

, λ
2

greedy
random
block size 3
block size 10

Figure 3.8: Different methods to grow a graph - The initial random simple, connected graph with n = 20 and m =
40 grew to a complete graph using different methods to choose the next edge or block of edges, respectively. The
shaded areas represent one, two, and three standard deviations for the randomly grown graph (1000 replications
used).

3.4 Relationship between TTD and Algebraic Connectivity
At this point, we have collected all the needed tools to concentrate on the actual objective of this
thesis. We are able to generate an arbitrary random connected graph and grow it by a number
of edges using the greedy algorithm that utilizes the Fiedler vector.

We are going to generate 100 random graphs with n=50 and conduct searches on each. We
assume a perfect sensor (α=β=0) that behaves myopically. We initially place the stationary
target in any of the 50 search cells according to a uniform prior distribution. The initial belief
is 1, that is, the target is known to be present in the search region. We know the target is inside
the search environment but we do not have any information about the likelihood of its location.
We always place the searcher in the same start cell (node 1). During the search we record the
number of steps the searcher conducts its search until it finds the target. This is equal to the
number of cells searched. It will take the searcher at most 50 steps to find the target if the
search environment happens to be a complete graph. We repeat the search for each graph 1000
times with different target locations. The time to decision (TTD) is the mean number of steps
needed for every run. In the case of our setup, this is the expected number of steps until the
searcher finds the target. Figure 3.9 shows once again that λ2 is non-decreasing with m. The
fact that λ2 ≤ δ explains the nearly quadratic shape. Sparse graphs will have small minimum
degrees, δ, and it takes many more additional edges to increase δ. Suppose we have a graph

28

200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

50

number of edges in the random graph

al
ge

br
ai

c
co

nn
ec

tiv
ity

, λ
2

0 10 20 30 40 50
23

24

25

26

27

28

29

30

algebraic connectivity, λ
2

tim
e

to
 d

ec
is

io
n,

 T
T

D
,

Figure 3.9: Connectivity in relation to number of
edges - The algebraic connectivity was computed
for 100 random, connected graphs with n=50.

Figure 3.10: TTD in relation to graph connec-
tivity - 1000 myopic searches were conducted on
each of the 100 graphs. The searcher was consid-
ered perfect and the target was located equal likely
to any node. TTD is the mean of the 1000 search
times for each graph.

with just one missing edge, an almost-complete graph. Adding that one edge will increase λ2
by at least one. In fact, Fiedler [7] has proven that if G is a graph with n vertices, which is not
complete than λ2(G) ≤ n− 2. A corollary to this result is that the last edge needed to complete
a graph increases the algebraic connectivity by at least two.

The plotted times to find the target in Figure 3.10 confirm our initial claim that search perfor-
mance increases with increasing algebraic connectivity. The lower λ2, the sparser the graph
and the longer it takes to visit all the nodes if the searcher behaves myopically. Recall that the
searcher moves to the cell with highest probability among all its neighbors. If all the neighbors
are already visited and thus have a probability of zero (due to the assumption of a perfect sen-
sor), the searcher does not have any information where to go and can bounce around for some
time. This becomes more unlikely the denser the graph is. In a complete graph, the searcher
will always have at least one neighbor with allocated probability greater than zero, provided the
target is not found yet. But once we have a graph that has a number of edges in the middle part
of the plot, there is not much gain in search performance due to adding additional edges.

In addition, we have to consider the variability caused by the target’s location and the search
behavior. The searcher can find the target in just one step or it can take a very long time and
both scenarios are equal likely. Furthermore, it is unlikely for the searcher to take the same
route even with the same initial conditions. Whenever there is no clear information for where
the searcher should go, it picks randomly from the set of all adjacent nodes.

29

3.5 Growing Graphs by the Greedy Algorithm
Let us finally grow the first graph by the greedy algorithm. To keep the simulation time short,
we start with a sparse graph with 20 nodes. The acceptance-rejection method returns a graph G
with m = 27 edges. We use the greedy algorithm and grow G 46 times by three edges each. So,
G grows to an almost-complete graph, in steps of three edges. We conduct 2000 searches for
each growing state. The searcher is considered perfect (α = β = 0) and behaves myopically.
The target’s location is uniform among the nodes. The plot in Figure 3.11 shows the expected
number of steps to find the target, that is, the mean of the 2000 search results for every state of
the graph. For comparison, we grow the same graph 46 times by three randomly chosen edges
each. We use the second y-axis to display the change of algebraic connectivity. The result is

20 40 60 80 100 120 140 160 180

11

14

17

20

ex
pe

ct
ed

 ti
m

e
to

 d
ec

is
io

n

number of edges in G

20 40 60 80 100 120 140 160 180

5

10

15

20

al
ge

br
ai

c
co

nn
ec

tiv
ity

Fiedler
random
calc for K

20

expected TTD

Fiedler
random

connectivity

Figure 3.11: Change of TTD with adding edges by greedy algorithm - The initial graph with n = 20 and m = 27
was grown in steps of three edges by the greedy algorithm. 2000 myopic searches were conducted for each growing
state. The searcher was considered perfect and the target was located uniformly. The same graph was grown by
the same number of edges randomly chosen. Searcher and target properties stayed the same. We included the
calculated expected number of steps for a K20.

very interesting. We can improve the search performance by adding just a few wisely chosen
edges to the initial graph. Doing this, we are in the neighborhood of the expected time to find
the target if the graph were complete. We cannot do better than that. Conversely, adding more
edges to that already grown graph does not gain much more.

However, we must be careful with interpretations. We did not constrain the edge set from which

30

to choose the edges and we did not allocate real coordinates to the nodes. So far, it takes the
same time (one step) to move from one node to any other adjacent node. These edges are not
weighted by real distances. Section 3.6 investigates the effect of different transit times between
nodes.

As mentioned, we will find the best search performance on a complete graph. The myopic
searcher will visit the nodes of a Kn according to the probability the target is located at that
cell. If the searcher is perfect, it will never visit the same cell twice. We use this information
to calculate the expected number of cell searches, E[S(Kn,

1
n
)], on a Kn where the target is

located in any cell with probability 1
n

, by

E[S(Kn,
1

n
)] =

{
1 ,with probability 1

n

1 + E[S(Kn−1,
1

n−1)] ,with probability (1− 1
n
).

If we know that the target is located in an environment represented by a K2, we have to search
one of the cells to know its location. Setting the initial conditions E[S(K2,

1
2
)] = 1 and solving

the recurrence gives the closed form:

E[S(Kn,
1

n
)] =

n∑
k=2

k

n
=
n (n+ 1)− 2

2n
, (3.1)

V ar[S(Kn,
1

n
)] =

1

n

n−1∑
k=1

[(
k − E[S(Kn,

1

n
)]

)2
]

+

(
(n− 1)− E[S(Kn,

1

n
)]

)2
 .

Now, we have to analyze if we always can improve the search performance in that way rather
than as artifact due to the chosen graph. We are going to generate fifteen sparse graphs with
n = 20 and grow those graphs ten times by three edges each step. We conduct 2000 myopic
searches with perfect sensor for each of the growing states. The target is still located equal
likely at one of the search cells. The result is shown in Figure 3.12.

We repeat this simulation for sparse graphs with 50 and 100 nodes. Because we expect a higher
number of edges needed to add to increase search performance, we will add five and ten edges,
respectively, at every step. The results are shown in Figure 3.13 and Figure 3.14.

31

0 3 6 9 12 15 18 21 24 27 30
10

12

14

16

18

20

22

number of edges added to the initial random graph

ex
pe

ct
ed

 n
um

be
r

of
 s

te
ps

 to
 fi

nd
 th

e
ta

rg
et

, T
T

D

K
20

initial random graphs with
22, 22, 23, 24, 24, 24, 24, 24, 25

25, 25, 25, 25, 25 and 25 edges

fitted curve:
y = 10.72 + 5.62 · e−0.26·x

Figure 3.12: Conducting searches on fifteen growing sparse graphs with 20 nodes - The initial graphs with
n = 20 and 20 ≤ m ≤ 25 were grown in steps of three edges by the greedy algorithm. 2000 myopic searches were
conducted for each growing state. The searcher was considered perfect and the target was located uniformly. We
included the calculated expected number of steps for a K20.

For the plots in Figure 3.12–3.14, we can fit an exponential function of the form

a+ b · ec·x,

where x is the number of added edges to the initial sparse graph. Using this fitted curve equation,
we can estimate the number of edges one must add to a sparse graph in order to increase search
performance by a desired amount. The denser the initial graph, the more edges are needed to get
a significant decrease in expected time to find the target, demonstrating the effect of diminishing
returns by additional edges. The actual number of edges to add is seen to be dependent on the
number of nodes in the graph. However, common among all graphs and independent of the
number of nodes is the fact that at some point, there is no further improvement with the addition
of more edges.

To illustrate the value of the fitted model, consider that for a sparse graph with n = 50 (refer to
Figure 3.13), one can add just ten edges to decrease the search time by half relative to the lowest
possible time, i.e., the theoretically derived lower bound. In other words, we gain 50% of the
possible search improvement by adding just 0.857% of the total possible edges available for ad-
dition. The analytic formulation that captures this relationship is one of the main contributions
of this work.

32

0 5 10 15 20 25 30 35 40 45 50
25

30

35

40

45

50

55

number of edges added to the initial random graph

ex
pe

ct
ed

 n
um

be
r

of
 s

te
ps

 to
 fi

nd
 th

e
ta

rg
et

, T
T

D

K
50

initial random graphs with
56, 56, 56, 57, 57, 58, 58, 58, 58

58, 58, 59, 59, 60 and 60 edges

fitted curve:
y = 26.86 + 18.03 · e−0.075·x

Figure 3.13: Conducting searches on fifteen growing sparse graphs with 50 nodes - The initial graphs with
n = 50 and 55 ≤ m ≤ 60 were grown in steps of five edges by the greedy algorithm. 2000 myopic searches were
conducted for each growing state. The searcher was considered perfect and the target was located uniformly. We
included the calculated expected number of steps for a K50.

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

number of edges added to the initial random graph

ex
pe

ct
ed

 n
um

be
r

of
 s

te
ps

 to
 fi

nd
 th

e
ta

rg
et

, T
T

D

K
100

initial random graphs with
126, 128, 140, 143, 144, 145
147, 149, 149 and 150 edges

fitted curve:
y = 53.78 + 26.98 · e−0.037·x

Figure 3.14: Conducting searches on ten growing sparse graphs with 100 nodes - The initial graph with
n = 100 and 120 ≤ m ≤ 150 were grown in steps of ten edges by the greedy algorithm. 2000 myopic searches
were conducted for each growing state. The searcher was considered perfect and the target was located uniformly.
We included the calculated expected number of steps for a K100.

33

The way we came up with the equation to explain the relationship between added edges and
time to decision is time consuming. We cannot provide an equation for a graph with an arbitrary
number of nodes unless we conduct the simulation. Thus, it would be nice if we could estimate
the parameters a, b and c in relation to n, the number of nodes in the graph.

We space a series of simulations with different numbers of nodes. For each n, we take a number
of graphs, grow those graphs, and fit an exponential line. To get a good estimate for the param-
eters, we have to grow the graphs until it is complete. Remember that the number of edges is
dramatically increasing with the number of nodes. Knowing that the fitted line is exponential,
we can increase the number of edges between the data points, i.e., starting with three edges
between two simulations, increase to five, ten, 100, and 500 for a large number of nodes. An-
other factor that influences the accuracy of the parameter estimates is the number of searches
conducted. While 2000 replications for a graph with n = 10 is sufficient, the same number
of replications for a graph with n = 120 is questionable. The target is uniformly distributed
among the nodes. The long-run number of times the target is located in cell ci is 200 for n = 10

and 16.67 for n = 120.

In Figure 3.15 we can see the simulations result for the parameter a. The value turns out to be

a = E[S(Kn,
1

n
)].

In Figure 3.16 we see the simulation result for parameter b. The value turns out to be

b =

√
V ar[S(Kn,

1

n
)].

Figure 3.17 shows the simulation result for parameter c. We included an exponential fit. A close
approximation for the value of c is

c =
n√

V ar[S(Kn,
1
n
)]
· (E[S(Kn,

1

n
)]

1
n(n−1)

2
− n

.

34

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

number of nodes in the graph

a

simulation result
calculation

Figure 3.15: Estimate coefficient a - Simulations to grow graphs with different n were conducted. The plot shows
the parameters a of the fitted curve. The calculated numbers are a = E[S(Kn,

1
n
)].

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

number of nodes in the graph

b

simulation result
calculation

Figure 3.16: Estimate coefficient b - Simulations to grow graphs with different n were conducted. The plot shows

the parameters b of the fitted curve. The calculated numbers are b =
√
V ar[S(Kn,

1
n
)].

35

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of nodes in the graph

c

fitted curve:
c = 0.0352 + 1.1523 · e−0.0809·n

simulation result
exponential fit
approximation

Figure 3.17: Estimate coefficient c - Simulations to grow graphs with different n were conducted. The plot shows
the parameters c of the fitted curve. We includes an exponential fit as well as our stated approximation.

36

3.6 Incorporating Initial Information
Up to this point, we only used random graphs without any coordinates assigned to their nodes;
that is, we assumed the length of each edge to be one. In real applications, however, we certainly
have to think about the edge length and the associated travel time. In addition, we may have
some information about the likelihood of the target location, described by the prior probability
map. Using that probability map to determine the path taken through the graph can decrease
the expected time to find the target. In this section we describe the impact of including this
information into the search process.

3.6.1 The Subgraph Idea
The simulations and results so far are based on a prior probability map that is uniform, i.e., the
target could be located anywhere. Fortunately, this is not true all the time, since prior intelli-
gence is often available. If we provide a probability map to the searcher that is not uniform,
the target could be found faster. The improvement in TTD depends on the distribution itself.
It is more likely to find the target in one of the high-probability cells. Clearly, the best tactic
is to search the cells in order of their assigned probability from highest to smallest—see “most
inviting strategy” [54]. Exactly that will happen if the search environment is a complete graph.
We have already made use of this fact when calculating the minimum time it takes to find the
target. Unfortunately, a complete graph is hard to find in real-world applications and therefore
we will not be able to reach the desired cell within the next step.

Here is another approach. Once the searcher reaches the area of high-probability cells, we want
it to visit as many of those cells as possible before it searches low-probability cells. An induced
complete subgraph that includes only high-probability cells would do the job. After entering
the subgraph, the searcher is focused on all the nodes with a higher likelihood of finding the
target. It sounds beneficial to add edges in order to improve the connectivity among the higher
probability nodes.

Consider the implementation as follows: We extract a subgraph from the search environments
model that consists of all the high-probability cells, such that the probability sums up to a
predefined threshold (e.g., 80%) of the probability mass allocated to the search environment.
Recall that the probability inside the search environment does not have to sum to one because
of the introduction of the virtual cell. Figure 3.18 depicts this idea and we can see the original
graph, the associated probabilities map, and the associated induced subgraph.

37

After finding the subgraph, we can now extract it from the original graph. That subgraph is
subjected to growth by the greedy algorithm described in previous sections and the augmented
subgraph is merged back into the original graph. Using this method we ensure that the growth
algorithm will only consider the high-probability nodes when choosing to add an edge. The
result should provide more possibilities to the searcher to walk around the high-probability
cells.

probability

0.037

0.074

0.11

(a) (b)
Figure 3.18: Induced subgraph - (a) The probability map was derived using a Markov chain, the same way as
described in Figure 3.20. (b) The darker nodes of the induced subgraph represent the smallest node set needed to
represent 80% of the probability mass. That subgraph is subject to grow by the greedy algorithm.

We created 30 sparse random graphs with 50 nodes and number of edges between 60 and 70.
We assigned a prior probability map that looks Gaussian on the graph. Each of the graphs was
grown by ten edges using the greedy algorithm with and without extracting a subgraph that in-
corporates 85% of the probability. Finally we conducted 3000 searches on each of the 90 graphs
to assess the goodness of the subgraph idea. Figure 3.19 shows the probability distribution and
the simulation result.

We can observe that the subgraph method outperforms the ordinary greedy algorithm in 80% of
the cases. In other cases the subgraph method did worse. The amount we could gain using this
subgraph approach is much more than the amount we would lose. Therefore, there is a potential
value in using this method, which merits further investigation on what conditions we must meet
in order to see an improvement.

38

1 5 10 15 20 25 30 35 40 45 50

0.01

0.02

0.03

0.04

0.05

node number

pr
io

r
pr

ob
ab

ili
ty

 o
f t

ar
ge

t l
oc

at
io

n

nodes {28, 29, . . . , 50}
is the smallest subset of nodes
that covers at least 85% of the
probability, here 85.22%

1 5 10 15 20 25 30
0

20

40

60

graph number

T
T

D

original graph
augmented graph
augmented induced subgraph

1 5 10 15 20 25 30
−30

−20

−10

0

10

graph number

T
T

D
 d

iff
er

en
ce

 [%
]

(a) (b)
Figure 3.19: Subgraph analysis, random graphs - (a) Probability map that was used for the analysis. (b) Time-to-
decision comparison for the different methods. The plot at the bottom shows the difference gained in TTD using the
subgraph idea. Reference is the improvement gained by adding ten edges to the original graph using the greedy
algorithm. The horizontal lines mark the averages of gain or loss.

3.6.2 Coordinates and a More Realistic Edge Length

The assumption of having equal edge length makes the calculation easy and there is no need
to assign actual coordinates to the nodes. Certainly, that is not true dealing with real search
environments. Let us fix that and see how it influences the results we have observed so far.

A real scenario will be given by an environment that has no or just a few search nodes on it,
e.g., a city map. We can still keep the equal-edge-length assumption by discretizing the search
environment in an appropriate way. In other words, we put the nodes to the graph such that all
the edges have the same length or at least fall into a range of edge length. In addition, we will
leave the area of totally random graphs and will use graphs that could have an interpretation in
the real world (e.g., a road network, the floor plan of a building). Figure 3.20 depicts such a
graph. We take an arbitrary road network, put a grid on top, and assign nodes such that no edge
length exceeds

√
2.

If there is any information about the target’s location within that search environment, we can
express it as a prior probability of the target’s presence in each of the search cells (cell belief).
The assigned prior probabilities should represent a possible real world scenario. Thus, randomly
assigning probabilities seems to be a bad idea. Suppose we model a part of a street by ten nodes
that build a simple path. We would like not see an alternating sequence of very high and very
low probabilities following that path in a real world problem.

39

1 3 5 7 9 11

1

3

5

7

9

11

x−coordinates

y−
co

or
di

na
te

s

tp0

probability

0.037

0.074

0.11

Figure 3.20: Graph with assigned coordinates and prior target distribution - The target was assumed to be at
position tp0 at time zero with probability one. The likelihood of the targets position after 40 time steps is coded by
the assigned colors. The calculation was done using a Markov chain.

A Markov chain [55] can be used to calculate reasonable probabilities to model a target’s move-
ment. Assuming the same probability that the target will stay in the current node or move to any
of the adjacent nodes, we can easily derive the transition matrix, P, from the adjacency matrix.
The 1× n start vector, sv, allows us to distribute the initial probability mass among more than
one search cell. Knowing the target’s position probabilities at time ts = 0, we can calculate the
probability map, denoted probMap, that represents the target’s location likelihood after ts time
steps:

probMap = sv ·Pts .

In Figure 3.20, we can see such a prior probability coded by different colors. The target was
assumed to be at the position marked by tp0 at time zero. The searcher cannot reach the search
area within the next 40 time steps. By the time the searcher arrives, the target could be in each of
the search cells with a probability coded by the cell’s color, incorporating the target’s maximal
speed. Now we can use that information and provide it to the searcher. Compared to a uniform
prior target distribution, the searcher’s myopic behavior becomes more efficient. We can use
the greedy algorithm to grow any graph and certainly we can grow a graph as described above.

40

In order to keep the ability of transferring the problem to the real world, we have to think about
the set of possible edges to add; in particular, we want to constrain that edge set according to
edge length.

The greedy algorithm itself does not need any node coordinates to come up with a solution and
therefore does not care about the length of the edges it adds. But we do not want to tolerate
adding very large edges, where large can be measured by the largest edge already in the graph.
Suppose we have a graph that represents an entire city and its road network. We have put effort
to ensure that all the edges in the search region model are bounded above. In order to maximize
the algebraic connectivity of that graph, the algorithm may want to add an edge that connects
the southernmost with the northernmost cell, straight through the city, which is hard to imagine
would happen in the real world. Even it the searcher were a UAV, it would take a lot of precious
time to travel that long edge without searching.

We can take the graph and the probability map from Figure 3.20 and do various kinds of per-
turbations. The edges in the graph have a length of 1 or

√
2. We allow the greedy algorithm to

add five edges with a total length less than or equal to four. On one hand, we use the ordinary
greedy algorithm, and on the other hand, the subgraph method with a probability threshold of
0.9. Starting the search at position (4, 7) gives a better result for the subgraph method.

Figure 3.21 shows a histogram of time to decision for 5000 replications, conditioned on the
target location. We observe that augmenting a graph means decreasing the time to decision
for some nodes while increasing the time for some other nodes. The subgraph method does
well as long as the target is located inside that subgraph. We can decrease the TTD more
than augmenting the entire graph. But every coin has its flip side. In case the target is not
located inside the augmented subgraph, the search time may be longer than conducting the
search without adding any edges to the graph. The reason is because we try to force the searcher
to stay in high-probability areas of the search region. But even if small, there is a probability
the target is located in a low-probability cell. Providing more opportunities to walk directly
between the high-probability cells will postpone the need to consider low-probability for the
myopic searcher. Essential for the proposed method is to find the right subgraph, in particular,
to find the right threshold to extract the subgraph. We want to set the threshold in order to gain
most improvement in search performance whenever the target is located inside the extracted
subgraph. At the same time, we do not want to see the TTD increased for the low-probability
target locations.

41

0 50 100 TTD
0

500

1000

target is located inside the subgraph
or

ig
in

al
 g

ra
ph

(a)
0 50 100 TTD

0

50

100
target is located outside the subgraph

(b)

0 50 100 TTD
0

500

1000

(c)

au
gm

en
te

d
su

bg
ra

ph

0 50 100 TTD
0

50

100

(d)

0 50 100 TTD
0

500

1000

(e)

au
gm

en
te

d
gr

ap
h

0 50 100 TTD
0

50

100

(f)

Figure 3.21: TTD conditioned on target location - We used the graph and the probability map from Figure 3.20
and conducted a search using the original graph and two different augmented graphs. The searcher was considered
perfect. The mean of TTD for each plot is marked by the vertical lines. (a) and (b) show TTD for the original graph
conditioned on the actual target location. Augmenting the graph using a 90% probability subgraph decreased the
average TTD whenever the target was located inside the subgraph (c) and increased the average TTD otherwise
(d). Growing the entire graph decreased the mean of TTD for both conditions by a small amount, as we can see in
(e) and (f). The overall mean of TTD is smaller, using the subgraph idea for this example.

We can measure the entropy of the probability map to set the threshold used to extract the
subgraph [56]. The higher the entropy, the more uncertainty about the target location. Highest
uncertainty is reached with a uniform target distribution. At that state, the subgraph idea does
not make any sense. The non-monotonicity is explained by Figure 3.21. Adding edges increases
TTD for some target locations while decreasing TTD for others. Changing the size of the
subgraph results in different added edges, which can cause a change of TTD in the opposite
direction.

We have tested this property using the graph and the target distribution from Figure 3.20 for
different times late (i.e., number of times the Markov chain was updated for the probability

42

map calculation) and different probability thresholds. The result nominally supports the idea.
Let us suppose that we picked the best threshold if we get the lowest TTD. The best threshold
increases with increasing entropy of the probability map.

0 20 40 60 80 100
0

1

2

3

4

5

6

time late (number of markov chain iterations)

en
tr

op
y

of
 th

e
pr

ob
ab

ili
ty

 m
ap

max possible entropy
for a 58−node graph

There is no uncertainty about
the targets location at t=0.
With increasing time late the
likelihood of the target’s location
approaches more and more a
uniform distribution.

0.07 0.75 0.8 0.85 0.9 0.95 1

20

25

30

35

40

45

probability threshold used to extract the subgraph

tim
e

to
 d

ec
is

io
n

(T
T

D
)

time late = 20
time late = 40
time late = 80

(a) (b)
Figure 3.22: Subgraph analysis, random graphs - (a) Entropy of the probability map according to time late. We
used the graph from Figure 3.20 to compute the likelihood of the target location. (b) The separate lines show the
change in TTD by changing the probability threshold to extract the subgraph. The subgraph is getting larger with
increasing threshold. The smallest TTDs for each line are connected. The best probability threshold increases with
increasing entropy.

Another part that turns out to be influential is the starting point of the search. To see this, we
repeat the simulation used to get Figure 3.21 with several starting points for the search. The
simulation result is shown in Table 3.1. The cell with highest probability of hosting the target is
cell(3, 7). If we initially place the searcher in cell(4, 7), the right neighbor, we can decrease the
search time using the subgraph method rather than augmenting the entire graph. The simulation
result for starting the search in cell(2, 7), the left neighbor of the highest probability cell, does
not support the use of the subgraph method. We notice that it makes a difference where we
place the searcher to start the search. The question about the conditions that make the subgraph
method beneficial remains unsolved and opens a possible area for future work.

3.7 Other Search Methods
In this section, we analyze the impact of different search methods. First, we want to know
what method best fits more realistic search environments as described in the previous section.
Second, we want to test whether our results still hold. In addition, we looked at the assumption
of using a perfect sensor.

43

start node original graph augmented subgraph augmented graph
(1, 11) 22.20 22.67 21.65
(2, 7) 33.83 16.79 15.42
(4, 7) 24.68 16.59 21.20
(11, 1) 23.97 24.93 22.72

Table 3.1: TTD for different start nodes - Here we see the difference in time to decision caused by a change of the
searchers starting position. Cell (3, 7) has got the highest likelihood of target location. While starting from position
(2, 7) supports the subgraph method, starting from location (4, 7) requires to grow the entire graph in order to get
best search performance.

3.7.1 The Curse of a Myopic Searcher with Perfect Sensor
Although it may intuitively appear beneficial to have a myopic searcher with no false detection
rates, it sometimes causes trouble. To investigate the large variance we observed in the simu-
lation data, we looked at the search trace and revealed the problem. Suppose the subgraph in
Figure 3.23, with initial probability coded by color intensity. This could be a graph we want to
search or just a part of a larger graph that is connected via cell 15 to the remaining nodes. Let
us place the target in cell 1 (according to the initial probability there is a high likelihood that
this can happen). The perfect searcher will first enter cell 3. The probability allocated to cell
4 is slightly higher than the probability for cell 2. That forces the myopic searcher to search
node 4 and all the way down to node 14. All the already searched cells hold the target with
probability zero due to the perfect searcher. The memoryless searcher needs to find its way out
of that trap without any information. In essence, we find the searcher stuck in a local minimum,
which is a known shortcoming of myopic algorithms. At any position (except position 14) the
searcher must randomly choose between two equal likely neighbors. So it will walk forward
and backwards without pattern until it hits node 3 by chance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

sp

tp

probability distribution

0.004 0.131 0.099 0.067 0.128

Figure 3.23: Example for a perfect searchers trap - The target is assumed to be at position tp. The likelihood of
the targets position coded by the assigned colors. The probability allocated to cell 4 is diminutive higher than the
probability for cell 2. The perfect myopic behaved sensor will run into a local minimum.

The statistics for 5000 simulations are shown in the following table. For the searcher to avoid
being trapped, we would like to give it some memory to retrace the way as soon as possible. We

44

statistic min 1stquantile median 3rdquantile max µ σ
TTD 25 65 103 171 731 133.08 94.73

Table 3.2: Statistics for a trapped perfect myopic sensor - Large TTDs are caused by the searcher’s lack of
memory and the zero probability of target location for the already searched cells.

can use the fact that it is most unlikely to find a perfect sensor in reality and assign a perfect sen-
sor a small false negative rate. That false detection rate causes a missed detection on occasion.
It causes the searcher to leave a little probability mass in the already unsuccessfully searched
cells. That remaining probability helps the searcher to trace back. It provides information about
the way it came and there is no need to randomly choose between two equal likely neighbors.
Repeating the same simulation as described above with (β = 0.001) returned a TTD = 25 for
each of the 5000 trials, that is, µ = 25 and σ = 0.

3.7.2 Shortest-path Searcher
We have seen that it takes the least amount of time to find the target if a myopic searcher is
placed in a search environment that can be represented by a complete graph with constant edge
length. However, we will not see such an environment in real applications. Nevertheless, the
takeaway is to search the cells in order of the allocated probability mass, from highest to lowest.

While the myopic searcher uses only local information to identify the next step, a searcher
using a constrained shortest-path approach can use global information. It not only considers the
adjacent neighbors as possible next search cells, but the entire search environment. It picks the
highest probability cell, calculates the shortest path to that cell, and starts to travel.

There are two different behaviors in terms of observations. The searcher could stop at every
node while traveling and conduct a search, or the searcher will only search the high-probability
node and not perform observations in the nodes it travels through. The second method needs
to conduct the same number of searches as the myopic searcher in a complete graph. On top
of that time, we have to add the additional travel time. This fact makes it hard to compare
against the myopic search method. We need to define how long it takes to travel and how long
it takes to search a single cell. In case the searcher moves fast compared to the search time, the
shortest-path searcher may have an advantage. If it takes much longer to travel in contrast to
search a cell, the myopic searcher may be the better choice.

A simple simulation can show that a shortest-path searcher will travel a lot in a more realistic
environment, as shown in Figure 3.20, which is intuitive. The probability decreases from the

45

point of target location at time zero in all possible directions. Searching the nodes in order of
decreasing probability forces the searcher to change direction often.

Identifying which method is best for the given search environment and prior probability distri-
bution remains to be determined and is an area for future work. The point we want to make is
that our result holds for a shortest-path searcher, too. The time to find the target can be reduced
by augmenting the graph.

3.8 Growing Graphs by Hitting Time
Whenever we play the game with imperfect sensors, it may take much longer to find the target
compared to the time it takes using a perfect sensor (refer to Figure 2.3). The reason is that
we have to search cells multiple times to be sure about the target’s presence or absence. A
cell where the searcher did not find the target still contains probability mass of the target’s
presence (provided β > 0). That probability mass will grow due to future probability updates.
To reduce the search time, and more importantly to provide a stopping criterion for the searcher,
we previously introduced a lower bound B and an upper bound B, which are the probability
thresholds to exceed in order to conclude the search.

As derived in [57], let us suppose we want to concentrate the search on just a single cell until the
cell’s probability exceeds B or gets smaller than B. We would need the minimum number of
searches if the searcher returns only 0 (target not present) or only 1 (target present) respectively.

Utilizing the Bayes’ update rule recursively, we can learn the pattern. Provided the sensor
returns always zero (one), gives the minimum number t of needed visits

t >


ln B(1−p)

(1−B)p

ln 1−β
α


to exceed the upper threshold B and

t >

⌈
ln B(1−p)

(1−B)p

ln β
1−α

⌉

to go below the lower threshold B, where p is the initial probability and α and β the false
detection rates. The higher α and β, the more likely it is the searcher has to visit several nodes
more than once. The next node with highest probability of containing the target could be far

46

away in distance, and the myopic searcher would spend a lot of time to finally reach that node.
The searcher could face the same problem several times. Motivated by this fact, we want to take
out the large hitting times from the graph by placing an appropriate edge.

The hitting time (i, j) denoted ht(i, j), is the expected time it takes for the searcher to first
visit node j starting at node i [22]. This time can be calculated using an absorbing Markov
chain. We declare the probability to stay at node j as one, and thus, created an absorbing

state. Rewriting the probability transition matrix in the form

(
1 0

R Q

)
allows the calculation

E [T |x0 = i] =
r∑
i=s

(I −Q)−1ij , where {0 . . . s − 1} are the absorbing states and {s . . . r} the

transition states. With one calculation, we get the hitting times for node j from all possible start
nodes i.

The return time for a node j is the expected time until a searcher revisits that node. We find
the solution solving the Markov chain for the long-run proportion of being in a specific state.
E [T |x0 = j] = 1

πj
. We have to solve the system of equations

πj =
∑
k

πkPkj∑
j

πj = 1.

A solution for this is πj = deg(j)
2m

.

Here is how we can use this information to define a new method to augment a graph. We
compute all the hitting times (this is a n×n matrix), find the largest among them, and place an
edge between the start and end nodes. Adding an edge using this method influences all the
other hitting times immediately. Adding more than one edge to the graph requires multiple
hitting-time calculations.

The best method we have so far is the greedy algorithm using the Fiedler vector to select the
edge to add. That method is used as a reference to compare the goodness of the hitting-time
method. We use a random graph with n = 50 and m = 62 and grow the graph ten times by five
edges. We do this using both the greedy algorithm and the hitting-time method. We conduct a
search with 3000 replications for each graph. The searcher has false detection rates of α = 0.00

and β = 0.01. The resulting times to detection are plotted in Figure 3.24.

47

60 65 70 75 80 85 90 95 100 105 110 115

30

35

40

45

ex
pe

ct
ed

 ti
m

e
to

 d
ec

is
io

n

number of edges in G

60 65 70 75 80 85 90 95 100 105 110 115

0.5

1.0

1.5

2.0

al
ge

br
ai

c
co

nn
ec

tiv
ity

hitting time

Fiedler

expected TTD

hitting time

Fiedler

connectivity

Figure 3.24: Hitting-time method vs. Fiedler method - A random graph with n = 50 and m = 62 was grown ten
times to five edges using the different methods. A search with 3000 replications was conducted for every state. The
sensor had a false detection rate of α = 0.00 and β = 0.01. In addition to TTD, we plotted the algebraic connectivity
for every graph state for comparison purpose.

We observe that the proposed hitting-time method is a good alternative to the Fiedler method.

The hitting time for a specific node is highly influenced by its degree. In case of return time,
this fact is obvious looking at the formula for the calculation. The degree difference between
deg(i) and deg(j) is one of the reasons for a non-symmetric hitting-time matrix. In most cases,
we will see ht(i, j) 6= ht(j, i). Another metric was to use the combined hitting time, that is,
using ht(i, j) + ht(j, i), as criterion to find the edge to add. The results for TTD turn out not
to be significantly different from the normal hitting-time method, so we can save the additional
computation and go for the normal hitting-time method as proposed. Further investigation of
this approach is left for future study.

48

CHAPTER 4:
CONCLUSION AND FUTURE WORK

4.1 Conclusion
This thesis investigated the relationship between the addition of edges to a graph representing
a search environment and improvement in the search performance, as measured by the time
necessary to complete the search. This work leverages existing results pertaining to the sec-
ond smallest eigenvalue of the graph Laplacian, also known as the algebraic connectivity of
the graph. It performs comparisons to identify a greedy method based on the Fiedler vector as
an effective, efficient choice for augmenting a graph as well as a method utilizing the maxi-
mum hitting time. Statistical simulation studies and analysis using randomly generated graphs
validate this finding.

Further, this work enhances the understanding of the positive correlation between λ2 and the
search time until the target is found in problems of probabilistic search. In fact, search per-
formance on sparse graphs can be significantly improved by adding only a few wisely chosen
edges, and the relation between number of edges to add and the search time is modeled as ex-
ponential. This analytic model offers guidance for the necessary additional number of edges
needed to achieve a specified improvement in search for a target. This result also highlights
the fact that adding edges beyond a certain number does little to improve search performance,
and that knowledge of the relationship between number of additional edges and enhancement
of search will limit the expense of adding unhelpful edges.

This work also proposed a novel method for further enhancing the improvement in search per-
formance by partitioning the regions of high and low probability of target presence. By extract-
ing the former region as a subgraph and adding edges using the greedy method found to be most
effective, this approach offers a means of incorporating prior information on the target’s likely
locations into the graph augmentation process.

Simulation studies also show that it is sufficient for the searcher to utilize local information in
conducting its adaptive search of the environment. Such a myopic search strategy is seen to out-
perform other approaches that may involve global information, e.g., shortest path method, but
that are wasteful in forcing the searcher to transit through previously visited or low-probability
regions in the search environment.

49

4.2 Future Work

There are numerous avenues for future research, including extensions to account for hetero-
geneous edge weightings that can represent, for example, physical distances between spatial
locations.

Searcher trajectories that address the constrained paths will enhance the relevance of the pro-
posed models to practical applications of probabilistic search. Additional modifications to the
model for realistic scenarios will address the need to account for the time it takes to search a
cell, in addition to the time it takes to transit there. In such situations, it is possible that a variant
of the shortest path search algorithm investigated herein might become more attractive. We note
that such constrained search-path optimization problems are computationally intractable [58].

Similarly, more sophisticated treatment of the search-planning process by means of formulat-
ing a traveling-salesman problem can further improve the search performance. In other words,
slight detours yielding longer search path lengths but accumulating greater probability mass
may yield more efficient searches. Such routing algorithms have been formulated in operations
research and computer science and can be applied to the probabilistic-search problem as well
[59, 60]. A connection between the shortest spanning tree of a graph and the traveling-salesman
problem was already claimed in 1956 [61]. That may be a way to further enhance the applied
search algorithm. A close cousin of the traveling-salesman problem is the vehicle-routing prob-
lem and several known algorithms are discussed in [62]. Especially while using more than one
searcher, some of the algorithm’s ideas could be adopted to coordinate multiple searchers. An-
other interesting technique could be the use of pebbles that are left behind while searching, to
coordinate the search. That technique has been successfully used searching mazes [63].

The inclusion of correct information pertaining to the target location is seen to be beneficial
to the searcher; however, using incorrect information, either by misdirection or by mistake,
is significantly detrimental to the search process. In other words, if the searcher erroneously
attributes a low likelihood to the true target location, the myopic searcher will search for a long
time until that cell is finally searched. At some point it may be worthwhile to stop the search
and change strategy. Stopping the search and restarting at a different point is not a bad idea at
all [29]. The question is when to stop and where to restart, incorporating the time it takes to
reach the restarting location.

However, the myopic searcher may have an advantage over a searcher with global information

50

by restricting the search to local regions. Such advantages may further be accentuated in the
case of mobile targets, which is another area of future study [32, 33]. Addition of edges may
improve the searcher’s ability to localize the target, but also hinders the search by providing
greater access for a moving target to maneuver on the graph. Investigation of this trade-off, as
well as the ability to block some edges for the target movement, may reveal new methods of
search planning. Results from pursuit-evasion problem solving [34, 35, 36, 37, 38] might be
considered to guide the searcher through the environment or may reveal other ideas to influence
the search environment. While improving the searcher’s moving ability, we might want to
restrict the target’s movement by blocking or deleting edges. The competing strategies are
similar to minimax optimization problems. The problem of removing edges that most restrict
the target’s mobility can be seen as the dual of the thesis’ problem. Performing the Fiedler
vector method on the graph’s complement will find a heuristic solution.

Divide-and-conquer techniques may be beneficial to disconnect the graph in two smaller sub-
graphs. According to a given budget, we could use two searchers, one for each subgraph, or
we could use one searcher, but define where to start searching and when to change to the other
subgraph.

Other analytic models relating entropy of the initial target distribution and threshold percentage
of probability mass to specify the subgraph to be extracted and augmented offer additional
avenues of interesting research.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

LIST OF REFERENCES

[1] B. Bollobas, Random Graphs, 2nd ed. Cambridge University Press.

[2] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree
distribution and their applications,” Physical Review E, vol. 64, no. 026118, pp. 1–17,
2001.

[3] M. E. J. Newman, Random graphs as models for networks. Wiley – VCH Verlag GmbH
& Co. KGaA, Weinheim, 2002.

[4] P. Erdös and A. Rényi, “On random graphs I.” Publicationes Mathematicae, no. 6, pp.
290–297, 1959.

[5] ——, “On the evolution of random graphs,” Publications of the Mathematical Institute of

the Hungarian Academy of Sciences, no. 5, pp. 17–61, 1960.

[6] E. N. Gilbert, “Random Graphs,” The Annals of Mathematical Statistics, vol. 30, no. 4,
pp. 1141–1144, 1959.

[7] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,
vol. 23, no. 98, pp. 298–305, 1973.

[8] ——, “A property of eigenvectors of nonnegative symmetric matrices and its application
to graph theory,” Czechoslovak Mathematical Journal, vol. 25, no. 4, pp. 619–633, 1975.

[9] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” Graphs and Combina-

torics, vol. 7, no. 1, pp. 53–64, 1991.

[10] N. M. M. d. Abreu, “Old and new results on algebraic connectivity of graphs,” Linear

Algebra and its Applications, vol. 423, no. 1, pp. 53–73, 2007.

[11] A. S. Ibrahim, K. G. Seddik, and K. J. R. Liu, “Improving Connectivity via Relays De-
ployment in Wireless Sensor Networks,” in IEEE Global Telecommunications Conference.
IEEE, Nov. 2007, pp. 1159–1163.

[12] ——, Connectivity-Aware Network Maintenance via Relays Deployment. IEEE, Mar.
2008.

53

[13] Y. Wan, S. Roy, X. Wang, A. Saberi, T. Yang, M. Xue, and B. Malek, “On the Structure
of Graph Edge Designs that Optimize the Algebraic Connectivity,” in Proceedings 2008.

47th IEEE Conference on Decision and Control. IEEE, 2008, pp. 805–810.

[14] D. Mosk-Aoyama, “Maximum algebraic connectivity augmentation is NP-hard,” Opera-

tions Research Letters, vol. 36, no. 6, pp. 677–679, Nov. 2008.

[15] S. P. Boyd, “Convex optimization of graph Laplacian eigenvalues,” in Proceedings of the

International Congress of Mathematicians, vol. 3, no. 1-3. Citeseer, 2006, pp. 1311–
1319.

[16] S. P. Boyd and L. Vandenberghe, Convex optimization, 7th ed. Cambridge University
Press, 2004.

[17] A. Ghosh and S. P. Boyd, “Growing Well-connected Graphs,” in Proceedings of the 45th

IEEE Conference on Decision and Control, ser. (San Diego, CA). IEEE, 2006, pp. 6605–
6611.

[18] Y. Kim, “Bisection Algorithm of Increasing Algebraic Connectivity by Adding an Edge,”
IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 170–174, Jan. 2010.

[19] T. H. Chung, On Probabilistic Search Decisions under Searcher Motion Constraints, ser.
STAR. Springer Berlin Heidelberg, 2008, vol. 57, pp. 501–516.

[20] T. H. Chung and J. W. Burdick, “A Decision-Making Framework for Control Strategies
in Probabilistic Search,” in Proceedings 2007 IEEE International Conference on Robotics

and Automation. IEEE, 2007, pp. 4386–4393.

[21] G. Brightwell and P. Winkler, “Maximum hitting time for random walks on graphs,” Ran-

dom Structures & Algorithms, vol. 1, no. 3, pp. 263–276, Sep. 1990.

[22] L. Lovász, “Random Walks on Graphs: a Survey,” Department of Computer Science, Yale
University, Tech. Rep., May 1994.

[23] W. K. Grassman, M. I. Taksar, and D. P. Heyman, “Regenerative Analysis and Steady
State Distributions for Markov Chains,” Operations Research, vol. 33, no. 5, pp. 1107–
1116, 1985.

[24] H. Chen and F. Zhang, “The expected hitting times for finite Markov chains,” Linear

Algebra and its Applications, vol. 428, pp. 2730–2749, 2008.

54

[25] F. P. Kelly, “A Remark on Search and Sequencing Problems,” Mathematics of Operations

Research, vol. 7, no. 1, pp. 154–157, 1982.

[26] F. R. K. Chung, R. L. Graham, and M. Saks, “Dynamic search in Graphs,” Discrete Algo-

rithms and Complexity, pp. 351–387, 1987.

[27] P. Sarkar, A. W. Moore, and A. Prakash, “Fast Incremental Proximity Search in Large
Graphs,” in Proceedings of the 25. International Conference on Machine Learning, 2008,
pp. 896–903.

[28] M. Bouvel, V. Grebinski, and G. Kucherov, “Combinatorial Search on Graphs Motivated
by Bioinformatics Applications: A Brief Survey,” Graph-Theory, Concepts in Computer

Science, pp. 16–27, 2005.

[29] T. Walsh, “Search in a Small World,” in Proceedings of the 16th International Joint Con-

ference on Artificial Intelligence, vol. 2. Morgan Kaufmann Publishers Inc., 1999.

[30] M. L. Weitzman, “Optimal Search for the Best Alternative,” Econometrica, vol. 47, no. 3,
pp. 641–654, 1979.

[31] D. Assaf and S. Zamir, “Continuous and discrete search for one of many objects,” Opera-

tions Research Letters, vol. 6, no. 5, pp. 205–209, 1987.

[32] S. S. Brown, “Optimal Search for a Moving Target in Discrete Time and Space,” Opera-

tions Research, vol. 28, no. 6, pp. 1275–1289, 1980.

[33] A. R. Washburn, “Search for a Moving Target: The FAB Algorithm,” Operations Re-

search, vol. 31, no. 1, pp. 739–751, 1983.

[34] T. Parsons, Pursuit-evasion in a graph, ser. Lecture Notes in Mathematics. Springer-
Verlag Berlin Heidelberg, 1978, vol. 642, pp. 426–441.

[35] M. A. M. Vieira, R. Govindan, and G. S. Sukhatme, “Optimal policy in discrete pursuit-
evation games,” Department of Computer Science, University of Southern California,
Tech. Rep. 08–900, 2008.

[36] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Probabilistic Pursuit-
Evation Games: Theory, Implementation, and Experimental Evaluation,” IEEE Transac-

tions on Robotics and Automation, vol. 18, no. 5, pp. 662–669, 2002.

55

[37] C. V. Ravishankar and S. Kopparty, “A framework for pursuit evation games in Rn,” In-

formation Processing Letters, vol. 96, no. 3, pp. 114–122, 2005.

[38] A. S. Goldstein and E. M. Reingold, “The complexity of pursuit on a graph,” Theoretical

Computer Science, vol. 143, no. 1, pp. 93–112, 1995.

[39] D. Assaf and S. Zamir, “Optimal Sequential Search: A Bayesian Approach,” The Annals

of Statistics, vol. 13, no. 3, pp. 1213–1221, 1985.

[40] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “Optimal Search for a Lost Target
in a Bayesian World,” Field and Service Robotics, 2006.

[41] A. R. Washburn, “Branch and Bound Methods for Search Problems,” Department of Op-
erations Research, Naval Postgraduate School, Monterey, California, Tech. Rep. 95–003,
1995.

[42] J. L. Devore, Probability and statistics for engineering and the sciences, enhanced review

edition. Duxbury Press, 2008.

[43] S. M. Ross, “A Problem in Optimal Search and Stop,” Operations Research, vol. 17, no. 6,
pp. 984–992, 1969.

[44] C. C. J. Milton, “Optimal Stopping in a Discrete Search Problem,” Operations Research,
vol. 21, no. 3, pp. 741–747, 1973.

[45] D. H. Wagner, W. C. Mylander, and T. J. Sanders, Naval Operations Analysis, 3rd ed.
Naval Institute Press, Annapolis, Maryland, 1999.

[46] A. R. Washburn, Search and detection (Topics in operations research), 4th ed. Institute
for Operations Research and the Management Sciences, 2002.

[47] L. D. Stone, Theory of optimal search), 2nd ed. Military Applications Section, Operations
Research Society of America, 1989.

[48] G. Chartrand and P. Zhang, Introduction to Graph Theory (reprint) (Walter Rudin Student

Series in Advanced Mathematics). McGraw-Hill Science/Engineering/Math, 2004.

[49] R. L. Rardin, Optimization in Operations Research. Prentice Hall International, 1998.

[50] D. P. Bertsekas, Nonlinear Programming, S. M. Robinson, Ed. Athena Scientific, 1999,
vol. 2.

56

[51] R. A. Horn and C. R. Johnson, Matrix Analysis, ser. Graduate Texts in Mathematics. Cam-
bridge University Press, 1990.

[52] S. J. Leon, Linear Algebra with Applications, 7th ed. Prentice Hall, 2006.

[53] L. N. Trefethen and D. Bau, Numerical Linear Algebra, ser. Texts in Applied Mathematics.
SIAM, 1997, vol. 55, no. Section 5.

[54] F. H. Smith and G. Kimeldorf, “Discrete sequential search for one of many objects,” The

Annals of Statistics, vol. 3, no. 4, pp. 906–915, 1975.

[55] S. M. Ross, Introduction to Probability Models, 9th ed. Academic Press, 2006.

[56] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Viley & Sons,
Inc., New York, USA, 1991.

[57] T. H. Chung and J. W. Byrdick, “Analysis of Search Decision Making using Probabilistic
Sarch Strategies,” in IEEE Transactions on Robotics. IEEE, to appear.

[58] K. E. Trummel and J. R. Weisinger, “The Complexity of the Optimal Searcher Path Prob-
lem,” Operations Research, vol. 34, no. 2, pp. 324–327, 1986.

[59] S. Lin and B. Kernighan, “An effective Heuristic Algorithm for the Traveling Salesman
Problem,” Operations Research, vol. 21, no. 2, pp. 498–516, 1971.

[60] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook, The Traveling Salesman Prob-

lem. Princeton University Press, 2007.

[61] J. Kruskal, Joseph B., “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society, vol. 7, no. 1, pp.
48–50, 1956.

[62] G. Laporte, “The Vehicle Routing Problem: An overview of exact and approximate algo-
rithms,” European Journal of Operational Research, no. 59, pp. 345–358, 1992.

[63] M. Blum and D. Kozen, “On the power of the compass (or, Why Mazes are Easier to
Search than Graphs),” in Foundation of Computer Science, Annual Symposium, 1978, pp.
132–142.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A:
SOFTWARE USED FOR SIMULATION AND

ANALYSIS

Simulation environment
I used the following program for simulation and analysis:

MATLAB R© & SIMULINK R©
student version

version 7.10.0.499 (R2010a)
32-bit (win32)

The MathWorksTM

Besides the help files that come with the program I frequently used the online help that can be
found under:
http://www.mathworks.com/academia/student version/start.html

SDP-solver
To be able to solve semidefinite programs within the MATLAB R© environment I downloaded
and installed the following solver:

cvx: A system for disciplined convex programming package
c©2005-2010 Michael C. Grant and Stephen P. Boyd
http://www.stanford.edu/˜boyd/cvx

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Directory, Training and Education, MCCDC, Code C46
Quantico, Virginia

Officer students in the Operations Research Program are also required to show:

4. Director, Studies and Analysis Division, MCCDC, Code C45
Quantico, Virginia

Officer students in the Space Ops/Space Engineering Program or in the Information War-
fare/Information Systems and Operations are also required to show:

5. Head, Information Operations and Space Integration Branch,
PLI/PP&O/HQMC, Washington, DC

61

